Skip to main content

Data from: Cross-scale interactions and the distribution-abundance relationship

Cite this dataset

Werner, Earl E. et al. (2015). Data from: Cross-scale interactions and the distribution-abundance relationship [Dataset]. Dryad.


Positive interspecific relationships between local abundance and extent of regional distribution are among the most ubiquitous patterns in ecology. Although multiple hypotheses have been proposed, the mechanisms underlying distribution-abundance (d-a) relationships remain poorly understood. We examined the intra- and interspecific distribution-abundance relationships for a metacommunity of 13 amphibian species sampled for 15 consecutive years. Mean density of larvae in occupied ponds was positively related to number of ponds occupied by species; employing the fraction of ponds uniquely available to each species this same relationship sharply decelerates. The latter relationship suggested that more abundant species inhabited most available habitats annually, whereas rarer species were dispersal limited. We inferred the mechanisms responsible for this pattern based on the dynamics of one species, Pseudacris triseriata, which transitioned between a rare, narrowly distributed species to a common, widely distributed species and then back again. Both transitions were presaged by marked changes in mean local densities driven by climatic effects on habitat quality. We identified threshold densities separating these population regime shifts that differed with landscape configuration. Our data suggest that these transitions were caused by strong cross-scale interactions between local resource/niche processes and larger scale metapopulation processes. The patterns we observed have relevance for understanding the mechanisms of interspecific d-a relationships and critical thresholds associated with habitat fragmentation.

Usage notes


North America
ES George Reserve