DATASET: Forecast made on January 11, 2021 for the second Covid-19 wave based on the improved SIR model with a constant ratio of recovery to infection rate
Data files
Aug 15, 2021 version files 3.72 MB
-
data-fig1a-CHE-black.csv
4.12 KB
-
data-fig1a-CHE-green.csv
5.23 KB
-
data-fig1a-DEU-black.csv
4.46 KB
-
data-fig1a-DEU-green.csv
5.26 KB
-
data-fig1a-GBR-black.csv
4.53 KB
-
data-fig1a-GBR-green.csv
5.17 KB
-
data-fig1a-ITA-black.csv
4.59 KB
-
data-fig1a-ITA-green.csv
5.16 KB
-
data-fig1b-CHE-black.csv
5.12 KB
-
data-fig1b-CHE-green.csv
6.06 KB
-
data-fig1b-DEU-black.csv
5.15 KB
-
data-fig1b-DEU-green.csv
6.14 KB
-
data-fig1b-GBR-black.csv
4.94 KB
-
data-fig1b-GBR-green.csv
5.88 KB
-
data-fig1b-ITA-black.csv
5.01 KB
-
data-fig1b-ITA-green.csv
5.80 KB
-
data-fig1c-CHE-black.csv
4.47 KB
-
data-fig1c-CHE-green.csv
5.14 KB
-
data-fig1c-DEU-black.csv
4.47 KB
-
data-fig1c-DEU-green.csv
5.16 KB
-
data-fig1c-GBR-black.csv
4.53 KB
-
data-fig1c-GBR-green.csv
5.16 KB
-
data-fig1c-ITA-black.csv
4.58 KB
-
data-fig1c-ITA-green.csv
5.11 KB
-
data-fig2a-BEL-black.csv
4.37 KB
-
data-fig2a-BEL-green.csv
5.27 KB
-
data-fig2a-CAN-black.csv
4.44 KB
-
data-fig2a-CAN-green.csv
5.16 KB
-
data-fig2a-FRA-black.csv
4.44 KB
-
data-fig2a-FRA-green.csv
5.22 KB
-
data-fig2a-RUS-black.csv
4.41 KB
-
data-fig2a-RUS-green.csv
5.16 KB
-
data-fig2b-BEL-black.csv
4.83 KB
-
data-fig2b-BEL-green.csv
5.83 KB
-
data-fig2b-CAN-black.csv
5.17 KB
-
data-fig2b-CAN-green.csv
6.13 KB
-
data-fig2b-FRA-black.csv
5.25 KB
-
data-fig2b-FRA-green.csv
6.03 KB
-
data-fig2b-RUS-black.csv
5.14 KB
-
data-fig2b-RUS-green.csv
6.20 KB
-
data-fig2c-BEL-black.csv
4.46 KB
-
data-fig2c-BEL-green.csv
5.17 KB
-
data-fig2c-CAN-black.csv
4.49 KB
-
data-fig2c-CAN-green.csv
5.12 KB
-
data-fig2c-FRA-black.csv
4.57 KB
-
data-fig2c-FRA-green.csv
5.17 KB
-
data-fig2c-RUS-black.csv
4.44 KB
-
data-fig2c-RUS-green.csv
5.10 KB
-
data-fig3-all-time-SIR.csv
3.18 KB
-
data-fig3-eta=0.0001.csv
3.19 KB
-
data-fig3-eta=0.1.csv
3.19 KB
-
data-fig3-eta=0.2.csv
3.19 KB
-
data-fig3-eta=0.5.csv
3.18 KB
-
data-fig4a.csv
2.83 KB
-
data-fig4b.csv
2.46 KB
-
data-fig4c.csv
2.06 KB
-
data-fig5a-k=0.6-1.csv
13.41 KB
-
data-fig5a-k=0.6-2.csv
13.38 KB
-
data-fig5a-k=0.6-3.csv
88.49 KB
-
data-fig5a-k=0.8-1.csv
13.63 KB
-
data-fig5a-k=0.8-2.csv
13.63 KB
-
data-fig5a-k=0.8-3.csv
87.13 KB
-
data-fig5a-k=0.9-1.csv
13.91 KB
-
data-fig5a-k=0.9-2.csv
13.91 KB
-
data-fig5a-k=0.9-3.csv
87.05 KB
-
data-fig5a-k=0.95-1.csv
14.10 KB
-
data-fig5a-k=0.95-2.csv
14.10 KB
-
data-fig5a-k=0.95-3.csv
88.68 KB
-
data-fig5b-k=0.6-1.csv
12.51 KB
-
data-fig5b-k=0.6-2.csv
12.60 KB
-
data-fig5b-k=0.8-1.csv
12.66 KB
-
data-fig5b-k=0.8-2.csv
12.81 KB
-
data-fig5b-k=0.9-1.csv
12.82 KB
-
data-fig5b-k=0.9-2.csv
12.89 KB
-
data-fig5b-k=0.95-1.csv
12.95 KB
-
data-fig5b-k=0.95-2.csv
13.08 KB
-
data-fig5c-k=0.1-1.csv
81.22 KB
-
data-fig5c-k=0.1-2.csv
80.30 KB
-
data-fig5c-k=0.1-3.csv
87.95 KB
-
data-fig5c-k=0.2-1.csv
81.49 KB
-
data-fig5c-k=0.2-2.csv
81.30 KB
-
data-fig5c-k=0.2-3.csv
88.46 KB
-
data-fig5c-k=0.3-1.csv
34.19 KB
-
data-fig5c-k=0.3-2.csv
34.12 KB
-
data-fig5c-k=0.3-3.csv
88.69 KB
-
data-fig5c-k=0.5-1.csv
34.55 KB
-
data-fig5c-k=0.5-2.csv
34.54 KB
-
data-fig5c-k=0.5-3.csv
88.68 KB
-
data-fig5d-k=0.1-1.csv
77.37 KB
-
data-fig5d-k=0.1-2.csv
76.83 KB
-
data-fig5d-k=0.2-1.csv
77.80 KB
-
data-fig5d-k=0.2-2.csv
77.76 KB
-
data-fig5d-k=0.3-1.csv
31.06 KB
-
data-fig5d-k=0.3-2.csv
31.06 KB
-
data-fig5d-k=0.5-1.csv
32.26 KB
-
data-fig5d-k=0.5-2.csv
32.27 KB
-
data-fig6a-k=0.6-1.csv
13.43 KB
-
data-fig6a-k=0.6-2.csv
13.44 KB
-
data-fig6a-k=0.6-3.csv
88.49 KB
-
data-fig6a-k=0.8-1.csv
13.62 KB
-
data-fig6a-k=0.8-2.csv
13.60 KB
-
data-fig6a-k=0.8-3.csv
87.13 KB
-
data-fig6a-k=0.9-1.csv
13.91 KB
-
data-fig6a-k=0.9-2.csv
13.88 KB
-
data-fig6a-k=0.9-3.csv
87.05 KB
-
data-fig6a-k=0.95-1.csv
14.10 KB
-
data-fig6a-k=0.95-2.csv
14.10 KB
-
data-fig6a-k=0.95-3.csv
88.68 KB
-
data-fig6b-k=0.6-1.csv
12.64 KB
-
data-fig6b-k=0.6-2.csv
12.54 KB
-
data-fig6b-k=0.8-1.csv
12.70 KB
-
data-fig6b-k=0.8-2.csv
12.74 KB
-
data-fig6b-k=0.9-1.csv
12.93 KB
-
data-fig6b-k=0.9-2.csv
13.01 KB
-
data-fig6b-k=0.95-1.csv
12.92 KB
-
data-fig6b-k=0.95-2.csv
13.10 KB
-
data-fig6c-k=0.1-1.csv
58.66 KB
-
data-fig6c-k=0.1-2.csv
52.09 KB
-
data-fig6c-k=0.1-3.csv
87.95 KB
-
data-fig6c-k=0.2-1.csv
58.62 KB
-
data-fig6c-k=0.2-2.csv
53.28 KB
-
data-fig6c-k=0.2-3.csv
88.46 KB
-
data-fig6c-k=0.3-1.csv
34.88 KB
-
data-fig6c-k=0.3-2.csv
35.37 KB
-
data-fig6c-k=0.3-3.csv
88.69 KB
-
data-fig6c-k=0.5-1.csv
34.97 KB
-
data-fig6c-k=0.5-2.csv
32.22 KB
-
data-fig6c-k=0.5-3.csv
88.68 KB
-
data-fig6d-k=0.1-1.csv
56.83 KB
-
data-fig6d-k=0.1-2.csv
56.79 KB
-
data-fig6d-k=0.2-1.csv
56.39 KB
-
data-fig6d-k=0.2-2.csv
56.36 KB
-
data-fig6d-k=0.3-1.csv
32.86 KB
-
data-fig6d-k=0.3-2.csv
32.84 KB
-
data-fig6d-k=0.5-1.csv
33.24 KB
-
data-fig6d-k=0.5-2.csv
33.20 KB
-
README
110 B
Abstract
The temporal evolution of second and subsequent waves of the Covid-19 pandemic is investigated. Analytic expressions for the peak time and asymptotic behaviors, early doubling time, late half decay time, and a half-early peak law, characterizing the dynamical evolution of number of cases and fatalities are derived, where the pandemic evolution exhibiting multiple waves is described by the semi-time SIR model. The asymmetry of the epidemic wave and its exponential tail are affected by the initial conditions; a feature that has no analogue in the all-time SIR model. Our analysis reveals that the immunity is very strongly increasing during the 2nd wave. Wave-specific SIR parameters describing infection and recovery rates we find to behave in a similar fashion. Still, an apparently moderate change of their ratio can have significant consequences. As we show, the probability for an additional wave is however low in several countries due to the fraction of immune inhabitants at the end of the 2nd wave, irrespective the currently ongoing vaccination efforts. We compare with alternate approaches and data available at the time of submission. Most recent data serves to demonstrate the successful forecast and high accuracy of the SIR-model in predicting the evolution of pandemic outbreaks.
Measured data has been collected from the open source stated in the manuscript and processed using in-house perl and python scripts. The enclosed data contains all the numbers that were used to create figures. Each line contains the x and y coordinates of a data point. Datasets are named after the figure and subfigure.
- Kröger, M; Schlickeiser, R (2020), Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: time-independent reproduction factor, Journal of Physics A: Mathematical and Theoretical, Journal-article, https://doi.org/10.1088/1751-8121/abc65d
- Schlickeiser, R; Kröger, M (2021), Analytical solution of the SIR-model for the temporal evolution of epidemics: part B. Semi-time case, Journal of Physics A: Mathematical and Theoretical, Journal-article, https://doi.org/10.1088/1751-8121/abed66
- Schlickeiser, Reinhard; Kröger, Martin (2021), Analytical Modeling of the Temporal Evolution of Epidemics Outbreaks Accounting for Vaccinations, Physics, Journal-article, https://doi.org/10.3390/physics3020028
- Kröger, Martin; Schlickeiser, Reinhard (2021). Forecast for the second Covid-19 wave based on the improved SIR model with a constant ratio of recovery to infection rate [Preprint]. MDPI AG. https://doi.org/10.20944/preprints202101.0449.v1
