Skip to main content
Dryad

Data from: Above- and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America

Cite this dataset

Aubin, Isabelle et al. (2022). Data from: Above- and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America [Dataset]. Dryad. https://doi.org/10.5061/dryad.jwstqjqbr

Abstract

Intraspecific trait variability (ITV) provides the material for species adaptation to environmental changes. To advance our understanding of how ITV can contribute to species adaptation to a wide range of environmental conditions, we studied five widespread understory forest species exposed to both continental-scale climate gradients, and local soil and disturbance gradients. We investigated the environmental drivers of between-site leaf and root trait variation, and tested whether higher between-site ITV was associated with increased trait sensitivity to environmental variation (i.e. environmental fit).

We measured morphological (specific leaf area: SLA, specific root length: SRL) and chemical traits (Leaf and Root N, P, K, Mg, Ca) of five forest understory vascular plant species at 78 sites across Canada. A total of 261 species-by-site combinations spanning ~4300 km were sampled, capturing important abiotic and biotic environmental gradients (neighbourhood composition, canopy structure, soil conditions, climate). We used multivariate and univariate linear mixed models to identify drivers of ITV and test the association of between-site ITV with environmental fit.

Between-site ITV of leaf traits was primarily driven by canopy structure and climate. Comparatively, environmental drivers explained only a small proportion of variability in root traits: these relationships were trait-specific and included soil conditions (Root P), canopy structure (Root N) and neighbourhood composition (SRL, Root K). Between-site ITV was associated with increased environmental fit only for a minority of traits, primarily in response to climate (SLA, Leaf N, SRL).

Synthesis. By studying how ITV is structured along environmental gradients among species adapted to a wide range of conditions, we can begin to understand how individual species might respond to environmental change. Our results show that generalizable trait-environment relationships occur primarily aboveground and only accounted for a small proportion of variability. For our group of species with broad ecological niches, variability in traits was only rarely associated with higher environmental fit, and primarily along climatic gradients. These results point to promising research avenues on the various ways in which trait variation can affect species performance along different environmental gradients.