Skip to main content

Data from: Assessing precision and requirements of three methods to estimate roe deer density

Cite this dataset

Marcon, Andrea; Battocchio, Daniele; Apollonio, Marco; Grignolio, Stefano (2020). Data from: Assessing precision and requirements of three methods to estimate roe deer density [Dataset]. Dryad.


Roe deer (Capreolus capreolus) is the most abundant cervid in Europe and, as such, has a considerable impact over several human activities. Accurate roe deer population size estimates are useful to ensure their proper management. We tested 3 methods for estimating roe deer abundance (drive counts, pellet-group counts, and camera trapping) during two consecutive years (2012 and 2013) in the Apennines (Italy) in order to assess their precision and applicability. During the study period, population density estimates were: drive counts 21.89±12.74 roe deer/km2 and pellet-group counts 18.74±2.31 roe deer/km2 in 2012; drive counts 19.32±11.12 roe deer/km2 and camera trapping 29.05±7.48 roe deer/km2 in 2013. Precision of the density estimates differed widely among the 3 methods, with coefficients of variation ranging from 12% (pellet-group counts) to 58% (drive counts). Drive counts represented the most demanding method on account of the higher number of operators involved. Pellet-group counts yielded the most precise results and required a smaller number of operators, though the sampling effort was considerable. When compared to the other two methods, camera trapping resulted in an intermediate level of precision and required the lowest sampling effort. We also discussed field protocols of each method, considering that volunteers, rather than technicians, will more likely be appointed for these tasks in the near future. For this reason, we strongly suggest that for each method managers of population density monitoring projects take into account ease of use as well as the quality of the results obtained and the resources required.

Usage notes