Skip to main content
Dryad logo

Data from: Negative biotic interactions drive predictions of distributions for species from a grassland community

Citation

Staniczenko, Phillip P.A.; Suttle, Kenwyn Blake; Pearson, Richard G.; Staniczenko, Phillip P. A. (2018), Data from: Negative biotic interactions drive predictions of distributions for species from a grassland community, Dryad, Dataset, https://doi.org/10.5061/dryad.kh587f2

Abstract

Understanding the factors that determine species’ geographic distributions is important for addressing a wide range of biological questions, including where species will be able to maintain populations following environmental change. New methods for modelling species distributions include the effects of biotic interactions alongside more commonly used abiotic variables such as temperature and precipitation; however, it is not clear which types of interspecific relationship contribute to shaping species distributions and should therefore be prioritised in models. Even if some interactions are known to be influential at local spatial scales, there is no guarantee they will have similar impacts at macroecological scales. Here we apply a novel method based on information theory to determine which types of interspecific relationship drive species distributions. Our results show that negative biotic interactions such as competition have the greatest effect on model predictions for species from a California grassland community. This knowledge will help focus data collection and improve model predictions for identifying at-risk species. Furthermore, our methodological approach is applicable to any kind of species distribution model that can be specified with and without interspecific relationships.

Usage Notes

Funding

National Science Foundation, Award: DBI-1052875