Data from: Multilocus genotyping of Giardia duodenalis isolates from children in Oromia Special Zone, central Ethiopia
Data files
May 13, 2017 version files 156.18 KB
-
Phylogenetic tree.pptx
Abstract
Background: Giardia duodenalis is the etiologic agent of giardiasis in humans and other mammals worldwide. The burden of disease is high among children in developing countries where sanitation is inadequate. However, the epidemiology and genetic diversity of this parasite is poorly understood in Ethiopia. This study aimed to determine the prevalence and genetic diversity of G. duodenalis in asymptomatic children in Oromia Special Zone, central Ethiopia. Results: A total of 286 fresh fecal specimens were collected from children and screened using microscopy and PCR. The prevalence of Giardia duodenalis was 10.8 % (31/286) and 16.8 % (48/286) as detected by microscopy and nested PCR, respectively. The infection rate by the study area, sex and age group difference was not significant (P > 0.05). Genotyping results showed that 22.9 % (11/48) of the isolates belonged to assemblage A while 77.1 % (37/48) belonged to assemblage B. Although double peaks were observed at the chromatogram level, no mixed assemblage or sub-assemblage infections were demonstrated. Isolates of assemblage A mostly belonged to the sub-assemblage AII and showed similarity with previously described isolates. However, there was great genetic variability within assemblage B that showed heterogeneous nucleotide positions. Fifteen of them were new genotypes: 5 at the triose phosphate isomerase (tpi), 2 at the β-giardin (bg), and 8 at the glutamate dehydrogenase (gdh) genes. Conclusions: Giardia duodenalis mainly assemblage B infection was predominant among the asymptomatic children in the study area. The high polymorphism found in isolates of assemblage B warrants a more defining tool to discriminate assemblage B at the sub-assemblage level. The findings of the present study indicate that there is a need to carry out national screening programs aiming to detect asymptomatic infections to minimize the reservoir of the disease.