Skip to main content

Data from: From forest to city: Urbanization modulates relative abundance of anti-predator coloration

Cite this dataset

Anderson, Nigel; Bernal, Ximena; Gutierrez, Stephanie (2019). Data from: From forest to city: Urbanization modulates relative abundance of anti-predator coloration [Dataset]. Dryad.


Increased urbanization has resulted in community changes including alteration of predator communities. Little is known, however, about how such changes affect morphological anti-predator traits. Given the importance of coloration in predator avoidance, this trait in particular is expected to be susceptible to novel selective environments in urban areas. Here we investigate the coloration pattern of a Neotropical anuran species, the túngara frog (Engystomops pustulosus), along an urbanization gradient. Túngara frogs have two distinct color patterns (unstriped and striped) which we found to occur at different frequencies along an urbanization gradient. Striped individuals increased in frequency with urbanization. To assess the strength of selection imposed by predators on the two color morphs, we deployed clay models of túngara frogs in forest and semi-urban populations. In addition, we examined microhabitat selection by individuals of the different morphs. We found higher predation rates associated with urbanization than forested areas. In particular, frogs from forested habitats had lower number of attacks by avian predators. Contrary to our predictions, however, predation rates were similar for both color morphs independent of urbanization. Also, coloration of the frogs did not affect their microhabitat preference. Overall, túngara frogs are more likely to have a striped coloration pattern in semi-urban areas where predation by birds is higher than in the forest. Our findings suggest that factors other than predation pressure shape the coloration pattern of urban frogs and emphasize the complex nature of effects that anthropogenic changes in habitat and predator communities may have on prey morphology.

Usage notes


National Science Foundation, Award: IOS#1433990


Panama Canal