Converting a metal-coordinating polymer to a polymerized ionic liquid improves Li+ transport
Data files
Dec 19, 2024 version files 1.27 MB
-
raw_data.zip
1.26 MB
-
README.md
9.83 KB
Abstract
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li+ batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li+ conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li+ coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im+) more efficiently solvates lithium salts and plasticizes the polymer. In addition, inverse Haven ratios as high as 10 indicate positively correlated Li+ transport, possibly due to percolation of nanochannels that significantly improve battery-relevant conductivity. From these combined effects, Li+ conductivity in PMS-Im+ (2.1*10-5 S/cm) is over an order of magnitude greater than in PMS-Im at 90 °C (1.6*10-6 S/cm).
README: Converting a metal-coordinating polymer to a polymerized ionic liquid improves Li+ transport
https://doi.org/10.5061/dryad.m37pvmdcg
Description of the data and file structure
See supporting information from published main text. https://doi.org/10.1021/acsmacrolett.4c00704 In short, polymers were synthesized via anionic polymerization and subsequently functionalized through multiple steps. Polymers were then blended with Li salts and characterized via thermal, electrochemical, and spectroscopic methods.
Files and variables
File: RawData.zip
Description: Files are organized into folders based on figure number from the corresponding manuscript: A. B. C... = folder names, a. b. c... = file names within folder, 1. 2. 3... = column names within file. The file list is followed by a list of variable names and descriptions.
A. Figure 2
a. Figure 2a.csv
1\. PMS-Im r03 1000/T
2\. PMS-Im r03 σEIS,Li (S/cm)
3\. PMS-Im r03 σEIS,Li (S/cm) error
4\. PMS-Im r10 1000/T
5\. PMS-Im r10 σEIS,Li (S/cm)
6\. PMS-Im r10 σEIS,Li (S/cm) error
7\. PMS-Im r30 1000/T
8\. PMS-Im r30 σEIS,Li (S/cm)
9\. PMS-Im r30 σEIS,Li (S/cm) error
10\. PMS-Im+ r03 1000/T
11\. PMS-Im+ r03 σEIS,Li (S/cm)
12\. PMS-Im+ r03 σEIS,Li (S/cm) error
13\. PMS-Im+ r10 1000/T
14\. PMS-Im+ r10 σEIS,Li (S/cm)
15\. PMS-Im+ r10 σEIS,Li (S/cm) error
16\. PMS-Im+ r30 1000/T
17\. PMS-Im+ r30 σEIS,Li (S/cm)
18\. PMS-Im+ r30 σEIS,Li (S/cm) error
b. Figure 2b.csv
1\. PMS-Im r03 1000/(T-Tg+50)
2\. PMS-Im r03 σEIS,Li (S/cm)
3\. PMS-Im r03 σEIS,Li (S/cm) error
4\. PMS-Im r10 1000/(T-Tg+50)
5\. PMS-Im r10 σEIS,Li (S/cm)
6\. PMS-Im r10 σEIS,Li (S/cm) error
7\. PMS-Im r30 1000/(T-Tg+50)
8\. PMS-Im r30 σEIS,Li (S/cm)
9\. PMS-Im r30 σEIS,Li (S/cm) error
10\. PMS-Im+ r03 1000/(T-Tg+50)
11\. PMS-Im+ r03 σEIS,Li (S/cm)
12\. PMS-Im+ r03 σEIS,Li (S/cm) error
13\. PMS-Im+ r10 1000/(T-Tg+50)
14\. PMS-Im+ r10 σEIS,Li (S/cm)
15\. PMS-Im+ r10 σEIS,Li (S/cm) error
16\. PMS-Im+ r30 1000/(T-Tg+50)
17\. PMS-Im+ r30 σEIS,Li (S/cm)
18\. PMS-Im+ r30 σEIS,Li (S/cm) error
B. SI Figure 1
a. SI Figure 1.csv
1\. PPM
2\. Counts
C. SI Figure 10
a. SI Figure 10.csv
1\. I
2\. t
D. SI Figure 11
a. SI Figure 11a.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
b. SI Figure 11b.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
c. SI Figure 11c.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
d. SI Figure 11d.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
E. SI Figure 12
a. SI Figure 12a.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
b. SI Figure 12b.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
c. SI Figure 12c.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
d. SI Figure 12d.csv
1\. Gradient Strength (T/m)
2\. Normalized Intensity
F. SI Figure 2
a. SI Figure 2.csv
1\. Mn
2\. Counts
G. SI Figure 3
a. SI Figure 3.csv
1\. PPM
2\. Counts
H. SI Figure 4
a. SI Figure 4.csv
1\. PPM
2\. Counts
I. SI Figure 5
a. SI Figure 5.csv
1\. PPM
2\. Counts
J. SI Figure 6
a. SI Figure 6.csv
1\. PPM
2\. LiTFSI Counts
3\. PMS-Im+ Counts
K. SI Figure 7
a. SI Figure 7.csv
1\. PMS-Im r0 Temperature (C)
2\. PMS-Im r0 Heat Flow
3\. PMS-Im r03 Temperature (C)
4\. PMS-Im r03 Heat Flow
5\. PMS-Im r10 Temperature (C)
6\. PMS-Im r10 Heat Flow
7\. PMS-Im r30 Temperature (C)
8\. PMS-Im r30 Heat Flow
9\. PMS-Im+ r0 Temperature (C)
10\. PMS-Im+ r0 Heat Flow
11\. PMS-Im+ r03 Temperature (C)
12\. PMS-Im+ r03 Heat Flow
13\. PMS-Im+ r10 Temperature (C)
14\. PMS-Im+ r10 Heat Flow
15\. PMS-Im+ r30 Temperature (C)
16\. PMS-Im+ r30 Heat Flow
L. SI Figure 8
a. SI Figure 8 Fits.csv
1\. 30 C Real Impedance (Ohms)
2\. 30 C Negative Imaginary Impedance (Ohms)
3\. 40 C Real Impedance (Ohms)
4\. 40 C Negative Imaginary Impedance (Ohms)
5\. 50 C Real Impedance (Ohms)
6\. 50 C Negative Imaginary Impedance (Ohms)
7\. 60 C Real Impedance (Ohms)
8\. 60 C Negative Imaginary Impedance (Ohms)
9\. 70 C Real Impedance (Ohms)
10\. 70 C Negative Imaginary Impedance (Ohms)
11\. 80 C Real Impedance (Ohms)
12\. 80 C Negative Imaginary Impedance (Ohms)
13\. 90 C Real Impedance (Ohms)
14\. 90 C Negative Imaginary Impedance (Ohms)
15\. 100 C Real Impedance (Ohms)
16\. 100 C Negative Imaginary Impedance (Ohms)
17\. 110 C Real Impedance (Ohms)
18\. 110 C Negative Imaginary Impedance (Ohms)
19\. 120 C Real Impedance (Ohms)
20\. 120 C Negative Imaginary Impedance (Ohms)
b. SI Figure 8 Measured.csv
1\. 30 C Real Impedance (Ohms)
2\. 30 C Negative Imaginary Impedance (Ohms)
3\. 40 C Real Impedance (Ohms)
4\. 40 C Negative Imaginary Impedance (Ohms)
5\. 50 C Real Impedance (Ohms)
6\. 50 C Negative Imaginary Impedance (Ohms)
7\. 60 C Real Impedance (Ohms)
8\. 60 C Negative Imaginary Impedance (Ohms)
9\. 70 C Real Impedance (Ohms)
10\. 70 C Negative Imaginary Impedance (Ohms)
11\. 80 C Real Impedance (Ohms)
12\. 80 C Negative Imaginary Impedance (Ohms)
13\. 90 C Real Impedance (Ohms)
14\. 90 C Negative Imaginary Impedance (Ohms)
15\. 100 C Real Impedance (Ohms)
16\. 100 C Negative Imaginary Impedance (Ohms)
17\. 110 C Real Impedance (Ohms)
18\. 110 C Negative Imaginary Impedance (Ohms)
19\. 120 C Real Impedance (Ohms)
20\. 120 C Negative Imaginary Impedance (Ohms)
M. SI Figure 9
a. SI Figure 9.csv
1\. Initial Measured Real Impedance (Ohms)
2\. Initial Measured Negative Imaginary Impedance (Ohms)
3\. Initial Fitted Real Impedance (Ohms)
4\. Initial Fitted Negative Imaginary Impedance (Ohms)
5\. Polarized Measured Real Impedance (Ohms)
6\. Polarized Measured Negative Imaginary Impedance (Ohms)
7\. Polarized Fitted Real Impedance (Ohms)
8\. Polarized Fitted Negative Imaginary Impedance (Ohms)
N. SI Table 1
a. SI Table 1.csv
1\. Polymer
2\. r
3\. Ri, total (Ohms)
4\. Ri, interfacial (Ohms)
5\. Rss, interfacial (Ohms)
6\. Iss (A)
7\. Ii (A)
8\. p+
O. SI Table 2
a. SI Table 2.csv
1\. Polymer
2\. DLi @ T=80 °C (10^–13 m^2 s^–1)
3\. DF @ T=80 °C (10^–13 m^2 s^–1)
4\. DLi @ T-Tg=120 °C (10^–13 m^2 s^–1)
5\. DF @ T-Tg=120 °C (10^–13 m^2 s^–1)
P. SI Table 3
a. SI Table 3.csv
1\. Polymer
2\. D_Li (10^–13 m^2 s^–1)
3\. D_TFSI (10^–13 m^2 s^–1)
4\. c_Li (10^-4 mol/cm^3)
5\. c_TFSI (10^-4 mol/cm^3)
6\. σ_NE (10^-6 S/cm)
7\. σ_EIS (10^-6 S/cm)
8\. σ_NE,Li (10^-6 S/cm)
9\. σ_EIS,Li (10^-6 S/cm)
10\. H^-1
11\. H^-1_Li
Q. Table 1
a. Table 1.csv
1\. Polymer
2\. r
3\. Tg (C)
4\. σEIS (10^-6 S/cm)
5\. σEIS (10^-6 S/cm) error
6\. ρLi
7\. σEIS, Li (10^-6 S/cm)
8\. σEIS, Li (10^-6 S/cm) error
R. Table 2
a. Table 2.csv
1\. Polymer
2\. DLi (10^-13 m^2/s)
3\. t+
4\. H^-1
5\. H^-1 error
6\. H^-1_Li
7\. H^-1_Li error
List of variable names and units, in order of appearance in the File List:
a. PMS-Im rXX: designates a variable as pertaining to poly(methyl siloxane imidazole) samples loaded with LiTFSI salt at an r ratio of r = 0.XX, where r is the molar ratio of Li to monomer units
b. PMS-Im+ rXX: designates a variable as pertaining to poly(methyl siloxane imidazolium) samples loaded with LiTFSI salt at an r ratio of r = 0.XX, where r is the molar ratio of Li to monomer units
c. T: temperature, in Kelvin unless specified otherwise
d. σEIS,Li: Li conductivity, as measured via electrochemical impedance spectroscopy (EIS), in S/cm unless specified otherwise
e. PPM: chemical shift value for nuclear magnetic resonance (NMR) spectroscopy, in parts per million
g. I: current, in mA
h. t: time, in s
i. Mn: molecular weight, in kg/mol
j. Ri: initial resistance before polarization during a Bruce-Vincent measurement, in ohms
k. Rss: steady state resistance after polarization during a Bruce-Vincent measurement, in ohms
l. Iss: steady state current, in amps
m. p+: limiting current fraction (also designated as pLi)
n. D_x: Self-diffusion coefficient of species x, in m^2/s unless specified otherwise
o. c_x: concentration of species x, in 10^-4 mol/cm^3
p. σ_NE: conductivity, as derived by the Nernst-Einstein (NE) equation, in S/cm unless specified otherwise
q. σEIS: conductivity, as measured via electrochemical impedance spectroscopy (EIS), in S/cm unless specified otherwise
r. σ_NE,Li: Li conductivity, as derived by the Nernst-Einstein (NE) equation, in S/cm unless specified otherwise
s. H^-1: inverse Haven ratio
t. H^-1_Li: Li inverse Haven ratio
u. Tg: glass transition temperature, in Celsius
v. t+: transport number
Access information
Other publicly accessible locations of the data: N/A
Data was derived from the following sources: N/A
Methods
See supporting information from published main text. https://doi.org/10.1021/acsmacrolett.4c00704 In short, polymers were synthesized via anionic polymerization and subsequently functionalized through multiple steps. Polymers were then blended with Li salts and characterized via thermal, electrochemical, and spectroscopic methods.