Data from: Spatiotemporal patterns of duck nest density and predation risk: a multi-scale analysis of 18 years and more than 10 000 nests
Data files
Jul 30, 2016 version files 388.92 KB
-
Ringelman et al. 2016 Oikos data.xlsx
Abstract
Many avian species are behaviorally-plastic in selecting nest sites, and may shift to new locations or habitats following an unsuccessful breeding attempt. If there is predictable spatial variation in predation risk, the process of many individuals using prior experience to adaptively change nest sites may scale up to create shifting patterns of nest density at a population level. We used 18 years of waterfowl nesting data to assess whether there were areas of consistently high or low predation risk, and whether low-risk areas increased, and high-risk areas decreased in nest density the following year. We created kernel density maps of successful and unsuccessful nests in consecutive years and found no correlation in predation risk and no evidence for adaptive shifts, although nest density was correlated between years. We also examined between-year correlations in nest density and nest success at three smaller spatial scales: individual nesting fields (10–28 ha), 16-ha grid cells and 4-ha grid cells. Here, results were similar across all scales: we found no evidence for year-to-year correlation in nest success but found strong evidence that nest density was correlated between years, and areas of high nest success increased in nest density the following year. Prior research in this system has demonstrated that areas of high nest density have higher nest success, and taken together, our results suggest that ducks may adaptively select nest sites based on the local density of conspecifics, rather than the physical location of last year's nest. In unpredictable environments, current cues, such as the presence of active conspecific nests, may be especially useful in selecting nest sites. The cues birds use to select breeding locations and successfully avoid predators deserve continued attention, especially in systems of conservation concern.