Skip to main content
Dryad logo

Data from: Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation

Citation

Holcomb, Michael C. et al. (2021), Data from: Mechanical feedback and robustness of apical constrictions in Drosophila embryo ventral furrow formation, Dryad, Dataset, https://doi.org/10.5061/dryad.m7q37nv

Abstract

Formation of the ventral furrow in the Drosophila embryo relies on the apical constriction of cells in the ventral region to produce bending forces that drive tissue invagination. Recently [J Phys Condens Matter. 2016;28(41):414021], we observed that apical constrictions during the initial phase of ventral furrow formation produce elongated patterns of cellular constriction chains prior to invagination, and argued that these are indicative of tensile stress feedback. Here, we quantitatively analyze the constriction patterns preceding ventral furrow formation and find that they are consistent with the predictions of our active-granular-fluid model of a monolayer of mechanically coupled stress-sensitive constricting particles. Our model shows that tensile feedback causes constriction chains to develop along underlying precursor tensile stress chains that gradually strengthen with subsequent cellular constrictions. As seen in both our model and available optogenetic experiments, this mechanism allows constriction chains to penetrate or circumvent zones of reduced cell contractility, thus increasing the robustness of ventral furrow formation to spatial variation of cell contractility by rescuing cellular constrictions in the disrupted regions.

Usage Notes

Funding

National Science Foundation, Award: CBET 1603627