Skip to main content
Dryad

Data from: Kinematics of chisel-tooth digging by African mole-rats

Data files

Oct 03, 2017 version files 36.69 MB

Abstract

Mole-rats are known to use their protruding, chisel-like incisors to dig underground networks of tunnels, but it remains unknown how these incisors are used to break and displace the soil. Theoretically, different excavation strategies can be used. Mole-rats could either use their head depressor muscles to power scooping motions of the upper incisors (by nose-down head rotations) or the lower incisors (by nose-up head rotations), or their jaw adductors to grab and break the soil after penetrating both sets of incisors into the ground, or a combination of these mechanisms. To identify how chisel-tooth digging works, a kinematic analysis of this behaviour was performed based on high-speed videos of 19 individuals from the African mole-rat species Fukomys micklemi placed inside transparent tubes in a laboratory setting. Our analysis showed that the soil is penetrated by both the upper and lower incisors at a relatively high gape angle, generally with the head rotated nose-up. Initially, the upper incisors remain approximately stationary to function as an anchor to allow an upward movement of the lower incisors to grab the soil. Next, a quick, nose-down rotation of the head further detaches the soil and drops the soil below the head. Consequently, both jaw adduction and head depression are jointly used to power tooth-digging in F. micklemi. The same mechanism, but with longer digging cycles, and soil being thrown down at smaller gape sizes, was used when digging in harder soil.