Skip to main content

Data from: Interannual variations in needle and sapwood traits of Pinus edulis branches under an experimental drought

Cite this dataset

Guerin, Marceau et al. (2018). Data from: Interannual variations in needle and sapwood traits of Pinus edulis branches under an experimental drought [Dataset]. Dryad.


1) In the Southwest United States, recent large-scale die-offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. 2) We hypothesized that piñon pines (Pinus edulis) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a seven-year experiment in central New Mexico with three watering treatments (irrigated, normal and rain exclusion). 3) We analyzed how variation in ‘evaporative structure’ (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip (d), defining the yearly ratios SA:LA and SA:LA/d. 4) Needle length (l) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness while stomatal diameter was reduced. As a result anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/d became highly non-linear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. 5) In new branch tissues, the responses of annual functional ratios to water stress were immediate (same year) and do not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates.

Usage notes


Sevilleta LTER
New Mexico