Data for: Dispersal-limited symbionts exhibit unexpectedly wide variation in host specificity
Data files
Apr 12, 2023 version files 4.25 MB
-
parulidae_proctophyllodidae_cophylo-main.zip
-
README_TableS1.txt
-
README_TableS2.txt
-
Table_S1_20230204_DataDryad.xlsx
-
Table_S2_20230124_DataDryad.xlsx
Abstract
A fundamental aspect of symbiotic relationships is host specificity, ranging from extreme specialists associated with only a single host species to generalists associated with many different species. Although symbionts with limited dispersal capabilities are expected to be host specialists, some are able to associate with multiple hosts. Understanding the micro- and macroevolutionary causes of variations in host specificity is often hindered by sampling biases and the limited power of traditional evolutionary markers. Here, we studied feather mites to address the barriers associated with estimates of host specificity for dispersal-limited symbionts. We sampled feather mites (Proctophyllodidae) from a nearly comprehensive set of North American breeding warblers (Parulidae) to study mite phylogenetic relationships and host-symbiont codiversification. We used pooled-sequencing (Pool-Seq) and short-read Illumina technology to interpret results derived from a traditional barcoding gene (cytochrome c oxidase subunit 1) versus 11 protein-coding mitochondrial genes using concatenated and multispecies coalescent approaches. Despite the statistically significant congruence between mite and host phylogenies, mite-host specificity varies widely, and host switching is common regardless of the genetic marker resolution (i.e., barcode versus multilocus). However, the multilocus approach was more effective than the single barcode in detecting the presence of a heterogeneous Pool-Seq sample. These results suggest that presumed symbiont dispersal capabilities are not always strong indicators of host specificity or of historical host-symbiont coevolutionary events. Comprehensive sampling at fine phylogenetic scales may help to better elucidate the microevolutionary filters that impact macroevolutionary processes regulating symbioses, particularly for dispersal-limited symbionts.