Skip to main content
Dryad logo

Data from: Fine-scale environmental control of hybridization in oaks

Citation

Lagache, Lélia; Klein, Etienne K.; Guichoux, Erwan; Petit, Rémy J. (2012), Data from: Fine-scale environmental control of hybridization in oaks, Dryad, Dataset, https://doi.org/10.5061/dryad.n50b4

Abstract

Natural hybridization is attracting much interest in modern speciation and conservation biology studies, but the underlying mechanisms remain poorly understood. In particular, it is unclear why environmental changes often increase hybridization rates. To study this question, we surveyed mating events in a mixed oak stand and developed a spatially-explicit individual-based hybridization model. This model, where hybridization is frequency dependent, pollen is non-limiting and which allows immigrant pollen to compete with local pollen, takes into account species-specific pollen dispersal and sexual barriers to hybridization. The consequences of pollen limitation on hybridization were studied using another simple model. The results indicate that environmental changes could increase hybridization rates through two distinct mechanisms. First, by disrupting the spatial organisation of communities, they should decrease the proportion of conspecific pollen available for mating, thus increasing hybridization rates. Second, by decreasing the density of conspecifics, they should increase pollen limitation and thus hybridization rates, as a consequence of chance pollination predominating over deterministic pollen competition. Altogether, our results point to a need for considering hybridization events at the appropriate level of organisation and provide new insights into why hybridization rates generally increase in disturbed environments.

Usage Notes

Location

western France
longitude: 0.17° W
latitude: 48.08° N
Petite Charnie State Forest