Skip to main content
Dryad logo

Data from: Phenotypic integration in an extended phenotype: among‐individual variation in nest‐building traits of the alfalfa leafcutting bee (Megachile rotundata)

Citation

Royauté, Raphaël et al. (2018), Data from: Phenotypic integration in an extended phenotype: among‐individual variation in nest‐building traits of the alfalfa leafcutting bee (Megachile rotundata), Dryad, Dataset, https://doi.org/10.5061/dryad.n925d21

Abstract

Structures such as nests and burrows are an essential component of many organisms’ life-cycle and requires a complex sequence of behaviors. Because behaviors can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would 1) show evidence of among-individual variation, 2) be organized into distinct functional modules, and 3) show evidence of trade-offs among functional modules due to limits on energy budgets. We tested these hypotheses using the alfalfa leafcutting bee, Megachile rotundata, a solitary bee and important crop pollinator. M. rotundata constructs complex nests by gathering leaf materials to form a linear series of cells in pre-existing cavities. In this study, we examined variation in the following nest construction traits: reproduction (number of cells per nest and nest length), nest protection (cap length and number of leaves per cap), cell construction (cell size and number of leaves per cell), and cell provisioning (cell mass) from 60 nests. We found a general decline in investment in cell construction and provisioning with each new cell built. In addition, we found evidence for both repeatability and plasticity in cell provisioning with little evidence for trade-offs among traits. Instead, most traits were positively, albeit weakly, correlated (r ~ 0.15), and traits were loosely organized into covarying modules. Our results show that individual differences in nest construction are detectable at a level similar to that of other behavioral traits and that these traits are only weakly integrated. This suggests that nest components are capable of independent evolutionary trajectories.

Usage Notes

Funding

National Science Foundation, Award: IOS 1557940

Location

Fargo
North Dakota