Skip to main content
Dryad

Data from: Save your host, save yourself? caste-ratio adjustment in a parasite with division of labor and snail host survival following shell damage

Cite this dataset

MacLeod, Colin; Poulin, Robert; Lagrue, Clément (2018). Data from: Save your host, save yourself? caste-ratio adjustment in a parasite with division of labor and snail host survival following shell damage [Dataset]. Dryad. https://doi.org/10.5061/dryad.nb85p

Abstract

Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life-history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste-ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste-ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste-ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.

Usage notes

Location

New Zealand