Skip to main content
Dryad

Forests on the move: Tracking climate-related treeline changes in mountains of the northeastern United States

Data files

Aug 21, 2023 version files 3.33 MB

Abstract

Aim
Alpine treeline ecotones are influenced by environmental drivers and are anticipated to shift their locations in response to changing climate. Our goal was to determine the extent of recent climate-induced treeline advance in the northeastern United States, and we hypothesized that treelines have advanced upslope in complex ways depending on treeline structure and environmental conditions.
 
Location
White Mountain National Forest (New Hampshire) and Baxter State Park (Maine), USA.
 
Taxon
High-elevation trees – Abies balsamea, Picea mariana, and Betula cordata
 
Methods
We compared current and historical high-resolution aerial imagery to quantify the advance of treelines over the last four decades, and link treeline changes to treeline form (demography) and environmental drivers. Spatial analyses were coupled with ground surveys of forest vegetation and topographical features to ground-truth treeline classification and provide information on treeline demography and additional potential drivers of treeline locations. We used multiple linear regression models to examine the importance of both topographic and climatic variables on treeline advance.
 
Results
Regional treelines have significantly shifted upslope over the past several decades (on average by 3 m/decade). Diffuse treelines (low tree densities and temperature limited) experienced significantly greater upslope shifts (5 m/decade) compared to other treeline forms, suggesting that both climate warming and treeline demography are important drivers of treeline shifts. Topographical features (slope, aspect) as well as climate (accumulated growing degree days, AGDD) explained significant variation in the magnitude of treeline advance (R2 = 0.32).
 
Main conclusions
The observed advance of regional treelines suggests that climate warming induces upslope treeline shifts particularly at higher elevations where greater upslope shifts occurred in areas with lower AGDD. Overall, our findings suggest that diffuse treelines at high-elevations are more a of a result of climate warming than other alpine treeline ecotones and thus they can serve as key indicators of ongoing climatic changes.