Skip to main content
Dryad logo

An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life

Citation

Kuhl, Heiner et al. (2020), An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life, Dryad, Dataset, https://doi.org/10.5061/dryad.ngf1vhhpx

Abstract

Presumably, due to a rapid early diversification, major parts of the higher-level phylogeny of birds are still resolved controversially in different analyses or are considered unresolvable. To address this problem, we produced an avian tree of life, which includes molecular sequences of one or several species of ∼ 90% of the currently recognized family-level taxa (429 species, 379 genera) including all 106 for the non-passerines and 115 for the passerines (Passeriformes). The unconstrained analyses of noncoding 3-prime untranslated region (3’UTR) sequences and those of coding sequences yielded different trees. In contrast to the coding sequences, the 3’UTR sequences resulted in a well-resolved and stable tree topology. The 3’UTR contained, unexpectedly, transcription factor binding motifs that were specific for different higher-level taxa. In this tree, grebes and flamingos are the sister clade of all other Neoaves, which are subdivided into five major clades. All non-passerine taxa were placed with robust statistical support including the long-time enigmatic hoatzin (Opisthocomiformes), which was found being the sister taxon of the Caprimulgiformes. The comparatively late radiation of family-level clades of the songbirds (oscine Passeriformes) contrasts with the attenuated diversification of non-passeriform taxa since the early Miocene. This correlates with the evolution of vocal production learning, an important speciation factor, which is ancestral for songbirds and evolved convergent only in hummingbirds and parrots. Since 3’UTR-based phylotranscriptomics resolved the avian family-level tree of life, we suggest that this procedure will also resolve the all-species avian tree of life

 

Funding

Max Planck Society

German Research Foundation, Award: KU 3596/1-1,324050651