Skip to main content
Dryad logo

Data from: Sibling rivalry vs mother’s curse: can kin competition facilitate a response to selection on male mitochondria?

Citation

Keaney, Thomas et al. (2020), Data from: Sibling rivalry vs mother’s curse: can kin competition facilitate a response to selection on male mitochondria?, Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbzq8

Abstract

Assuming that fathers never transmit mitochondrial DNA (mtDNA) to their offspring, mitochondrial mutations that affect male fitness are invisible to direct selection on males, leading to an accumulation of male-harming alleles in the mitochondrial genome (mother’s curse). However, male phenotypes encoded by mtDNA can still undergo adaptation via kin selection provided that males interact with females carrying related mtDNA, such as their sisters. Here, using experiments with Drosophila melanogaster carrying standardised nuclear DNA but distinct mitochondrial DNA, we test whether the mitochondrial haplotype carried by interacting pairs of larvae affects survival to adulthood, as well as the fitness of the adults. Although mtDNA had no detectable direct or indirect genetic effect on larva-to-adult survival, the fitness of male and female adults was significantly affected by their own mtDNA and the mtDNA carried by their social partner in the larval stage. Thus, mtDNA mutations that alter the effect of male larvae on nearby female larvae (which often carry the same mutation, due to kinship) could theoretically respond to kin selection. We discuss the implications of our findings for the evolution of mitochondria and other maternally inherited endosymbionts.

Methods

This data was collected during laboratory experiments using Drosophila melanogaster. It has been used in the manuscript titled "Sibling rivalry vs mother’s curse: can kin competition facilitate a response to selection on male mitochondria?", to be published in Proceedings of the Royal Society B