Skip to main content

Disentangling effects of climate and land use on biodiversity and ecosystem services – a multi-scale experimental design

Cite this dataset

Redlich, Sarah et al. (2021). Disentangling effects of climate and land use on biodiversity and ecosystem services – a multi-scale experimental design [Dataset]. Dryad.


1. Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients.

2. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximize the potential range and independence of environmental variables at different spatial scales.

3. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, i.e. near-natural, agriculture and urban, resulted in 60 study regions (5.8x5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8 °C and a spatial extent of ~310x310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, i.e. forests, grasslands, arable land or settlement (local climate gradient 4.5–10 °C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r≤0.33| and |r≤0.29|, respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements.

4. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.


The data sets contains climate and land-use variables resulting from the selection of 179 study plots within 60 study regions in Bavaria, Germany. The nested, large-scale design aimed to minimize correlations between land use and climate across the regional and local scale, while also reducing the correlation between the configuration (edge density) and composition (% land use cover) of landscapes in 1-km scale around the study plots.

We also provide the R code used to calculate correlations and create graphs on Zenodo.

Usage notes

The ReadMe file contains an explanation of all variables of the main datasets used in the analyses and their measurement units.


Bavarian Ministry of Science and the Arts