Skip to main content
Dryad

Data from: Oxygen isotope composition of teeth suggests endothermy and possible migration in some Late Cretaceous shark taxa from the Gulf Coastal Plain, USA

Data files

Jul 24, 2024 version files 25.55 KB

Abstract

We analyzed the oxygen isotope composition of biogenic apatite phosphate (δ18Op) in fossil tooth enameloid to investigate the paleoecology of Late Cretaceous sharks in the Gulf Coastal Plain of Alabama, U.S.A. We analyzed six different shark taxa from both the Mooreville Chalk and the Blufftown Formation. We compared shark δ18Op with the δ18Op of a co-occurring poikilothermic bony fish Enchodus petrosus as a reference for ambient conditions. E. petrosus tooth enamel δ18Op values are similar between formations (21.3‰ and 21.4‰ VSMOW, respectively), suggesting minimal differences in water δ18O between formations. Most shark taxa in this study are characterized by δ18Op values that overlap with E. petrosus values, indicating they likely lived in similar habitats and were also poikilothermic. Ptychodus mortoni and Cretoxyrhina mantelli exhibit significantly lower δ18Op values than co-occurring E. petrosus (P. mortoni δ18Op is 19.1‰ VSMOW in the Mooreville Chalk; C mantelli δ18Op is 20.2‰ VSMOW in the Mooreville Chalk and 18.1‰ VSMOW in the Blufftown Formation). Excursions into brackish or freshwater habitats and thermal water-depth gradients are unlikely explanations for the lower P. mortoni and C. mantelli δ18Op values. The low P. mortoni δ18Op value is best explained by higher body temperature relative to surrounding temperatures due to active heating (e.g., mesothermy) or passive heating due to its large body size (e.g., gigantothermy). The low C. mantelli δ18Op values are best explained by a combination of mesothermy (e.g., active heating) and migration (e.g., from the Western Interior Seaway, low latitude warmer waters, or the paleo-Gulf Stream), supporting the hypothesis that mesothermy evolved in lamniform shark taxa during the Late Cretaceous. If the anomalous P. mortoni δ18Op values are also driven by active thermoregulation, this suggests that mesothermy evolved independently multiple in families of Late Cretaceous sharks.