Skip to main content
Dryad logo

Data from: Microstructure and cerebral blood flow within white matter of the human brain: a TBSS analysis

Citation

Giezendanner, Stéphanie et al. (2016), Data from: Microstructure and cerebral blood flow within white matter of the human brain: a TBSS analysis, Dryad, Dataset, https://doi.org/10.5061/dryad.p0h3t

Abstract

Background: White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. Methods: Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). Results: CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. Conclusion: The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.

Usage Notes