Skip to main content

Data from: Abnormal thalamo-cortical network dynamics in migraine

Cite this dataset

Tu, Yiheng et al. (2019). Data from: Abnormal thalamo-cortical network dynamics in migraine [Dataset]. Dryad.


Objective: To investigate the dynamic functional connectivity of thalamo-cortical networks in interictal migraine patients and whether clinical features are associated with abnormal connectivity. Methods: We investigated dynamic functional network connectivity (dFNC) of the migraine brain in 89 interictal migraine patients and 70 healthy controls. We focused on the temporal properties of thalamocortical connectivity using sliding window cross-correlation, clustering state analysis, and graph-theory methods. Relationships between clinical symptoms and abnormal dFNC were evaluated using a multivariate linear regression model. Results: Five dFNC brain states were identified to characterize and compare dynamic functional connectivity patterns. We demonstrated that migraineurs spent more time in a strongly interconnected between-network state, but they spent less time in a sparsely-connected state. Interestingly, we found that abnormal posterior thalamus (pulvinar nucleus) dFNC with the visual cortex and the precuneus were significantly correlated with headache frequency of migraine. Further topological measures revealed migraineurs had significantly lower efficiency of information transfer in both global and local dFNC. Conclusion: Our results demonstrated a transient pathological state with atypical thalamo-cortical connectivity in migraineurs and extended current findings regarding abnormal thalamo-cortical networks and dysrhythmia in migraine.

Usage notes