Skip to main content
Dryad logo

Data from: QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs

Citation

Oakley, Christopher G.; Ågren, Jon; Atchison, Rachel A.; Schemske, Douglas W. (2014), Data from: QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs, Dryad, Dataset, https://doi.org/10.5061/dryad.p26bp

Abstract

Local adaptation, defined as higher fitness of local vs. non-local genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade-offs across environments, but little is known about the traits and genes underlying fitness trade-offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that sub-freezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade-offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. We found seven QTL, and for five QTL the Swedish genotype increased freezing tolerance. Three of these co-localized with locally adaptive survival QTL in Sweden and with trade-off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade-offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2 is implicated as a candidate gene for one of the trade-off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade-off in nature.

Usage Notes