Skip to main content
Dryad

Data from: Sexual selection, body mass, and molecular evolution interact to predict diversification in birds

Data files

Feb 26, 2019 version files 1.75 MB

Abstract

Sexual selection is a powerful agent of evolution, driving microevolutionary changes in the genome and macroevolutionary rates of lineage diversification. The mechanisms by which sexual selection might influence macroevolution remain poorly understood. For example, sexual selection might drive positive selection for key adaptations that facilitate diversification. Furthermore, sexual selection might be a general driver of molecular evolutionary rate. We lay out some of the potential mechanisms that create a link between sexual selection and diversification, based on causal effects on other life-history traits such as body mass and the rate of molecular evolution. Birds are ideally suited for testing the importance of these relationships because of their diverse reproductive systems and the multiple evolutionary radiations that have produced their astounding modern diversity. We show that sexual selection (measured as the degree of polygyny) interacts with the rate of molecular evolution and with body mass to predict species richness at the genus level. A high degree of polygyny and rapid molecular evolution are positively associated with the net rate of diversification, with the two factors being especially important for explaining diversification in large-bodied taxa. Our findings further suggest that mutation rates underpin some of the macroevolutionary effects of sexual selection. We synthesize the existing theory on sexual selection as a force for diversity and propose avenues for exploring this association using genome data.