Skip to main content
Dryad logo

Divergence time estimation of genus Tribolium by extensive sampling of highly conserved orthologs

Citation

Ramesh, Balan; Firneno, Jr., Thomas; Demuth, Jeffrey (2021), Divergence time estimation of genus Tribolium by extensive sampling of highly conserved orthologs, Dryad, Dataset, https://doi.org/10.5061/dryad.pc866t1mz

Abstract

Tribolium castaneum, the red flour beetle, is among the most well-studied eukaryotic genetic model organisms. Tribolium often serves as a comparative bridge from highly derived Drosophila traits to other organisms. Simultaneously, as a member of the most diverse order of metazoans, Coleoptera,  Tribolium informs us about innovations that accompany hyper diversity. However, understanding the tempo and mode of evolutionary innovation requires well-resolved, time-calibrated phylogenies, which are not available for Tribolium. The most recent effort to understand Triboliumphylogenetics used two mitochondrial and three nuclear markers. The study concluded that the genus may be paraphyletic and reported a broad range for divergence time estimates. Here we employ recent advances in Bayesian methods to estimate the relationships and divergence times among Tribolium castaneumT. brevicornisT. confusumT. freemani, and Gnatocerus cornutus using 1368 orthologs conserved across all five species and an independent substitution rate estimate. We find that the most basal split within Tribolium occurred ~86 Mya [95% HPD 85.90–87.04 Mya] and that the most recent split was between T. freemani and T. castaneum at ~14 Mya [95% HPD 13.55-14.00]. Our results are consistent with broader phylogenetic analyses of insects and suggest that Cenozoic climate changes played a role in the Tribolium diversification.