Bacterial QS expands the Xanthomonas campestris pv. campestris invasion of host tissue to trigger host-chlorophagy and maximize disease symptom
Data files
Mar 31, 2022 version files 76.52 MB
-
Fig._1B_WT_dpi_9_3D_view_(gfp_rfp_DIC).tif
1.97 MB
-
Fig._1B_WT_dpi_9_3D_view_a._gfp.tif
1.97 MB
-
Fig._1B_WT_dpi_9_3D_view_b._rfp.tif
1.97 MB
-
Fig._1B_WT_dpi_9_3D_view_c._(gfp_rfp).tif
1.97 MB
-
Fig._1B_WT_dpi_9_3D_view_d._DIC.tif
1.97 MB
-
Fig._2(B)_WT_Z-stacks_dpi_0_a._gfp.jpg
195.93 KB
-
Fig._2(B)_WT_Z-stacks_dpi_0_b._rfp.jpg
92.48 KB
-
Fig._2(B)_WT_Z-stacks_dpi_0_c._(gfp_rfp).jpg
200.82 KB
-
Fig._2(B)_WT_Z-stacks_dpi_0_d._DIC.jpg
191.68 KB
-
Fig._2(B)_WT_Z-stacks_dpi_0_e._(gfp_rfp_DIC).jpg
261.29 KB
-
Fig._2(B)_WT_Z-stacks_dpi_12_a._gfp.jpg
318.89 KB
-
Fig._2(B)_WT_Z-stacks_dpi_12_b._rfp.jpg
219.67 KB
-
Fig._2(B)_WT_Z-stacks_dpi_12_c._(gfp_rfp).jpg
328.12 KB
-
Fig._2(B)_WT_Z-stacks_dpi_12_d._DIC.jpg
125.37 KB
-
Fig._2(B)_WT_Z-stacks_dpi_12_e._(gfp_rfp_DIC).jpg
333.08 KB
-
Fig._2(B)_WT_Z-stacks_dpi_3_a._gfp.jpg
249.45 KB
-
Fig._2(B)_WT_Z-stacks_dpi_3_b._rfp.jpg
140.33 KB
-
Fig._2(B)_WT_Z-stacks_dpi_3_c._(gfp_rfp).jpg
252.62 KB
-
Fig._2(B)_WT_Z-stacks_dpi_3_d._DIC.jpg
122.87 KB
-
Fig._2(B)_WT_Z-stacks_dpi_3_e._(gfp_rfp_DIC).jpg
281.21 KB
-
Fig._2(B)_WT_Z-stacks_dpi_6_a._gfp.jpg
269.56 KB
-
Fig._2(B)_WT_Z-stacks_dpi_6_b._rfp.jpg
183.84 KB
-
Fig._2(B)_WT_Z-stacks_dpi_6_c._(gfp_rfp_DIC).jpg
279.55 KB
-
Fig._2(B)_WT_Z-stacks_dpi_6_c._(gfp_rfp).jpg
276.97 KB
-
Fig._2(B)_WT_Z-stacks_dpi_6_d._DIC.jpg
109.19 KB
-
Fig._2(B)_WT_Z-stacks_dpi_9_a._gfp.jpg
317.02 KB
-
Fig._2(B)_WT_Z-stacks_dpi_9_b._rfp.jpg
220.91 KB
-
Fig._2(B)_WT_Z-stacks_dpi_9_c._(gfp_rfp).jpg
325.88 KB
-
Fig._2(B)_WT_Z-stacks_dpi_9_d._DIC.jpg
135.86 KB
-
Fig._2(B)_WT_Z-stacks_dpi_9_e._(gfp_rfp_DIC).jpg
326.87 KB
-
Fig._2C_WT___QS_dynamics.xlsx
17.50 KB
-
Fig._4(B)_REC_Z-stacks_dpi_0_a._gfp.jpg
83.71 KB
-
Fig._4(B)_REC_Z-stacks_dpi_0_b._rfp.jpg
50.80 KB
-
Fig._4(B)_REC_Z-stacks_dpi_0_c._(gfp_rfp).jpg
85.45 KB
-
Fig._4(B)_REC_Z-stacks_dpi_0_d._DIC.jpg
43.55 KB
-
Fig._4(B)_REC_Z-stacks_dpi_0_e._(gfp_rfp_DIC).jpg
91.08 KB
-
Fig._4(B)_REC_Z-stacks_dpi_12_a._gfp.jpg
237.48 KB
-
Fig._4(B)_REC_Z-stacks_dpi_12_b._rfp.jpg
146.63 KB
-
Fig._4(B)_REC_Z-stacks_dpi_12_c._(gfp_rfp).jpg
243.10 KB
-
Fig._4(B)_REC_Z-stacks_dpi_12_d._DIC.jpg
134.26 KB
-
Fig._4(B)_REC_Z-stacks_dpi_12_e._(gfp_rfp_DIC).jpg
267.19 KB
-
Fig._4(B)_REC_Z-stacks_dpi_3_a._gfp.jpg
253.50 KB
-
Fig._4(B)_REC_Z-stacks_dpi_3_b._rfp.jpg
176.53 KB
-
Fig._4(B)_REC_Z-stacks_dpi_3_c._(gfp_rfp).jpg
261.04 KB
-
Fig._4(B)_REC_Z-stacks_dpi_3_d._DIC.jpg
110.70 KB
-
Fig._4(B)_REC_Z-stacks_dpi_3_e._(gfp_rfp_DIC).jpg
264.47 KB
-
Fig._4(B)_REC_Z-stacks_dpi_6_a._gfp.jpg
135.33 KB
-
Fig._4(B)_REC_Z-stacks_dpi_6_b._rfp.jpg
102.59 KB
-
Fig._4(B)_REC_Z-stacks_dpi_6_c._(gfp_rfp_DIC).jpg
141.92 KB
-
Fig._4(B)_REC_Z-stacks_dpi_6_c._(gfp_rfp).jpg
140.56 KB
-
Fig._4(B)_REC_Z-stacks_dpi_6_d._DIC.jpg
64.86 KB
-
Fig._4(B)_REC_Z-stacks_dpi_9_a._gfp.jpg
255.75 KB
-
Fig._4(B)_REC_Z-stacks_dpi_9_b._rfp.jpg
165.19 KB
-
Fig._4(B)_REC_Z-stacks_dpi_9_c._(gfp_rfp).jpg
260.98 KB
-
Fig._4(B)_REC_Z-stacks_dpi_9_d._DIC.jpg
168.53 KB
-
Fig._4(B)_REC_Z-stacks_dpi_9_e._(gfp_rfp_DIC).jpg
287.18 KB
-
Fig._4C_REC___QS_dynamics.xlsx
17.41 KB
-
Fig._5B_Chloroplast_degradation_dynamics.xlsx
23.23 KB
-
Fig._5C_In_planta_CFU_assay.xlsx
32.64 KB
-
Fig._6B_movie_with_Projections_a._gfp.avi
639.06 KB
-
Fig._6B_movie_with_Projections_b._rfp.avi
595.56 KB
-
Fig._6B_movie_with_Projections_c.(gfp_rfp).avi
863.42 KB
-
Fig._6B_movie_with_Projections_d.DIC.avi
774.54 KB
-
Fig._6B_movie_with_Projections_e.(gfp_rfp_DIC).avi
1.18 MB
-
Fig._7A_3D_movie_a._gfp.avi
1.03 MB
-
Fig._7A_3D_movie_b._rfp.avi
314.25 KB
-
Fig._7A_3D_movie_c._(gfp_rfp).avi
1.06 MB
-
Fig._7A_3D_movie_d._DIC.avi
815.26 KB
-
Fig._7A_3D_movie_e._(gfp_rfp_DIC).avi
1.27 MB
-
Fig._7A_Slices_project_e.(gfp_rfp_DIC).avi
978.03 KB
-
Fig._7A_Slices_projection_a._gfp.avi
357.58 KB
-
Fig._7A_Slices_projection_b._rfp.avi
264.55 KB
-
Fig._7A_Slices_projection_c._(gfp_rfp).avi
375.05 KB
-
Fig._7A_Slices_projection_d._DIC.avi
931.31 KB
-
Fig._7B_3D_movie_a._gfp.avi
1.02 MB
-
Fig._7B_3D_movie_b._rfp.avi
378.05 KB
-
Fig._7B_3D_movie_c._(gfp_rfp).avi
1.08 MB
-
Fig._7B_3D_movie_d._DIC.avi
985.48 KB
-
Fig._7B_3D_movie_e._(gfp_rfp_DIC).avi
1.40 MB
-
Fig._7B_Slices_project_e._(gfp_rfp_DIC).avi
1.59 MB
-
Fig._7B_Slices_projection_a._gfp.avi
384.65 KB
-
Fig._7B_Slices_projection_b._rfp.avi
315.80 KB
-
Fig._7B_Slices_projection_c._(gfp_rfp).avi
392.91 KB
-
Fig._7B_Slices_projection_d._DIC.avi
1.56 MB
-
Fig._7C_3D_movie_a._gfp.avi
659.39 KB
-
Fig._7C_3D_movie_b._rfp.avi
360.97 KB
-
Fig._7C_3D_movie_c._(gfp_rfp).avi
718.89 KB
-
Fig._7C_3D_movie_d._DIC.avi
801.98 KB
-
Fig._7C_3D_movie_e._(gfp_rfp_DIC).avi
1.04 MB
-
Fig._7C_Slices_project_e._(gfp_rfp_DIC).avi
715.26 KB
-
Fig._7C_Slices_projection_a._gfp.avi
240.97 KB
-
Fig._7C_Slices_projection_b._rfp.avi
176.28 KB
-
Fig._7C_Slices_projection_c._(gfp_rfp).avi
258.06 KB
-
Fig._7C_Slices_projection_d._DIC.avi
679.89 KB
-
Fig._8B(i)_3D_movie_a._gfp.avi
542.47 KB
-
Fig._8B(i)_3D_movie_b._rfp.avi
402.14 KB
-
Fig._8B(i)_3D_movie_c._(gfp_rfp).avi
645.09 KB
-
Fig._8B(i)_3D_movie_d._DIC.avi
861.32 KB
-
Fig._8B(i)_3D_movie_e._(gfp_rfp_DIC).avi
1.06 MB
-
Fig._8B(i)_slice_pr_e._(gfp_rfp_DIC).avi
865.11 KB
-
Fig._8B(i)_slice_projec_c._(gfp_rfp).avi
306.39 KB
-
Fig._8B(i)_slice_projection_a._gfp.avi
269.37 KB
-
Fig._8B(i)_slice_projection_b._rfp.avi
238.50 KB
-
Fig._8B(i)_slice_projection_d._DIC.avi
931.31 KB
-
Fig._8B(ii)_3D_movie_a._gfp.avi
623.30 KB
-
Fig._8B(ii)_3D_movie_b._rfp.avi
377.51 KB
-
Fig._8B(ii)_3D_movie_c._(gfp_rfp).avi
709.87 KB
-
Fig._8B(ii)_3D_movie_d._DIC.avi
828.05 KB
-
Fig._8B(ii)_3D_movie_e._(gfp_rfp_DIC).avi
1.08 MB
-
Fig._8B(ii)_slice_e._(gfp_rfp_DIC).avi
1.27 MB
-
Fig._8B(ii)_slice_pro_c._(gfp_rfp).avi
333.73 KB
-
Fig._8B(ii)_slice_projection_a._gfp.avi
306.59 KB
-
Fig._8B(ii)_slice_projection_b._rfp.avi
241.06 KB
-
Fig._8B(ii)_slice_projection_d._DIC.avi
1.24 MB
-
Fig._8B(iii)_3D_movie_a._gfp.avi
741.93 KB
-
Fig._8B(iii)_3D_movie_b._rfp.avi
473.74 KB
-
Fig._8B(iii)_3D_movie_c._(gfp_rfp).avi
876.70 KB
-
Fig._8B(iii)_3D_movie_d._DIC.avi
1 MB
-
Fig._8B(iii)_3D_movie_e._(gfp_rfp_DIC).avi
1.29 MB
-
Fig._8B(iii)_slic_e._(gfp_rfp_DIC).avi
1.25 MB
-
Fig._8B(iii)_slice_pr_c._(gfp_rfp).avi
450.50 KB
-
Fig._8B(iii)_slice_project_a._gfp.avi
409.86 KB
-
Fig._8B(iii)_slice_project_b._rfp.avi
346.56 KB
-
Fig._8B(iii)_slice_project_d._DIC.avi
1.20 MB
-
Fig._8B(iv)_3D_movie_a._gfp.avi
494.31 KB
-
Fig._8B(iv)_3D_movie_b._rfp.avi
372.87 KB
-
Fig._8B(iv)_3D_movie_c._(gfp_rfp).avi
590.41 KB
-
Fig._8B(iv)_3D_movie_d._DIC.avi
796.38 KB
-
Fig._8B(iv)_3D_movie_e._(gfp_rfp_DIC).avi
973.22 KB
-
Fig._8B(iv)_slice_e._(gfp_rfp_DIC).avi
725.44 KB
-
Fig._8B(iv)_slice_proj_c._(gfp_rfp).avi
228.93 KB
-
Fig._8B(iv)_slice_project_a._gfp.avi
206.78 KB
-
Fig._8B(iv)_slice_project_b._rfp.avi
178.21 KB
-
Fig._8B(iv)_slice_project_d._DIC.avi
708.73 KB
-
Fig._8B(v)_3D_movie_a._gfp.avi
371.16 KB
-
Fig._8B(v)_3D_movie_b._rfp.avi
269.31 KB
-
Fig._8B(v)_3D_movie_c._(gfp_rfp).avi
437.26 KB
-
Fig._8B(v)_3D_movie_d._DIC.avi
819.01 KB
-
Fig._8B(v)_3D_movie_e._(gfp_rfp_DIC).avi
896.77 KB
-
Fig._8B(v)_slice_pr_e._(gfp_rfp_DIC).avi
420.48 KB
-
Fig._8B(v)_slice_projec_c._(gfp_rfp).avi
139.17 KB
-
Fig._8B(v)_slice_project_a._gfp.avi
128.82 KB
-
Fig._8B(v)_slice_project_b._rfp.avi
113.16 KB
-
Fig._8B(v)_slice_project_d._DIC.avi
409.58 KB
Abstract
Using QS-responsive whole-cell bioreporters of Xcc and cabbage (Brassica oleracea) as a model system and confocal microscopy, we show a detailed chronology of QS-facilitated Xcc colonization in the host mesophyll region. We report the QS-enabled bacterial localization of parenchymal chloroplast within heterogeneously invaded host mesophyll tissue, leading triggered leaf-chlorosis and systemic infection.
Microscopy to observe the inoculated cabbage leaves
A confocal laser-scanning microscope (CLSM) (LSM700; Carl Zeiss, Germany) was used to visualize the bio-reporter cells and the chloroplast autofluorescence within inoculated cabbage leaves upto dpi (days post inoculation) 12. On each sampling dpi, the inoculated leaves were detached from the plant immediately prior to sectioning and sample preparation. For each inoculated leaf, after excising the diseased part, if present on specific day, multiple thin transverse sections were cut using a sterile razor blade with each sections approximately 100 to 150 µm thickness within 1cm2 proximal green regions excluding the mid-rib from the clipped end. The leaf slices were mounted on a glass slide (IS-3099; Rohem Industries pvt. Ltd, India) in transverse orientation sequentially with a coverslip and scanned under a CLSM (with 100x / 1.4 oil DIC M27 objective) for green and red fluorescence. Dual colour images were acquired by sequentially scanning the multiple leaf sections with settings optimal for GFP (excitation: 488 nm and emissions: 505 to 550 nm band pass, with 518 nm emission maximum), and RFP/chlorophyll autofluorescence (excitation: 555 nm and emissions: 582 to 800 nm band pass, with 585 nm emission maximum). Cross talk between the individual channels in this setup was always monitored and was negligible in all cases. A bright field image was also acquired for each section using a photo-multiplier detector measuring the transmitted light. Microscope power settings were adjusted to optimize contrast for each individual image. Confocal images for GFP (green), RFP (red) and Differential Interference Contrast (DIC) were constructed simultaneously using a multitrack mode via Pigtail-coupled solid-state lasers. Multiple Z-section scans were acquired at 0.5 µm increments in each field (Samal and Chatterjee, 2019). At least five inoculated leaves per plant were examined to visualize bacterial fluorescence in case of each bioreporter strain and negative control plants (i.e. 1X PBS inoculated), with the experimental repeat for thrice independently.
Image Analysis and Statistical validation
Bacterial count for intra- and the inter-cellular host-mesophyll localization was performed by analyzing each Z-plane at a time in the CLSM Z-stack image using ZEN lite 2012 (Carl Zeiss) imaging software; where all constitutive-GFP expressing bioreporter cells were counted manually after minimizing the background host-autofluorescence under the green channel, that accounts for all the dual-reporter cells. Simultaneously, within each CLSM raw image, approximately 400 to 600 no. of Xcc derived dual bio-reporter cells per sample was analyzed for both GFP and RFP fluorescence patterns (approximately 70 to 100 cells per field were observed for 5 different fields) to calculate the percentage of bacterial QS induction (Samal and Chatterjee, 2019). Outlines of the individual bacterial cells as well as host parenchymal cell-walls were further confirmed under the DIC channel for each Z-plane.
The individual CLSM image panels were prepared using FIJI (Image J) software after analyzing their raw images using ZEN lite 2012 (Carl Zeiss) imaging software, and imported into Photoshop CS5 (Adobe) software for brightness and contrast adjustments and assembly of the composite figure for publication. Statistical comparisons towards significant difference levels were computed using the Student’s test (non-parametric, paired, two-tailed test), where a “p value” of less than 0.05 was considered significant.