Skip to main content
Dryad logo

Data from: Divergent strategies in pre- and postzygotic reproductive isolation between two closely related Dianthus species

Citation

Cahenzli, Fabian; Bonetti, Christophe; Erhardt, Andreas (2018), Data from: Divergent strategies in pre- and postzygotic reproductive isolation between two closely related Dianthus species, Dryad, Dataset, https://doi.org/10.5061/dryad.pf28st1

Abstract

Quantifying the relative contribution of multiple isolation barriers to gene flow between recently diverged species is essential for understanding speciation processes. In parapatric populations, local adaptation is thought to be a major contributor to the evolution of reproductive isolation. However, extrinsic postzygotic barriers assessed in reciprocal transplant experiments are often neglected in empirical assessments of multiple isolation barriers. We analyzed multiple isolation barriers between two closely related species of the plant genus Dianthus, a genus characterized by the most rapid species diversification in plants reported so far. Although D. carthusianorum L. and D. sylvestris Wulf. can easily be hybridized in crossing experiments, natural hybrids are rare. We found that in parapatry, pollinator mediated prezygotic reproductive isolation barriers are important for both D. carthusianorum (0.761) and D. sylvestris (0.468). In contrast to D. carthusianorum, high hybrid viability in D. sylvestris (-0.491) was counteracted by strong extrinsic postzygotic isolation (0.900). Our study highlights the importance of including reciprocal transplant experiments for documenting extrinsic postzygotic isolation and demonstrates clearly divergent strategies and hence asymmetric pre- and postzygotic reproductive isolation between closely related species. It also suggests that pollinator-mediated and ecological isolation could have interacted in synergistic ways, further stimulating rapid speciation in Dianthus.

Usage Notes