Skip to main content

Data from: Taxonomy and phylogeny can yield comparable results in comparative palaeontological analyses


Soul, Laura C.; Friedman, Matt (2015), Data from: Taxonomy and phylogeny can yield comparable results in comparative palaeontological analyses, Dryad, Dataset,


Many extinct taxa with extensive fossil records and mature taxonomic classifications have not yet been the subject of formal phylogenetic analysis. Here, we test whether the taxonomies available for such groups represent useful (i.e., non-misleading) substitutes for trees derived from matrix-based phylogenetic analyses. We collected data for 52 animal clades that included fossil representatives, and for which a recent cladogram and pre-cladistic taxonomy were available. We quantified the difference between the time-scaled phylogenies implied by taxonomies and cladograms using the matching cluster distance metric. We simulated phenotypic trait values and used them to estimate a series of commonly used, phylogenetically explicit measures (phylogenetic signal [Blomberg's K], phylogenetic generalized least squares [PGLS], mode of evolution [Brownian vs. Ornstein–Uhlenbeck], and phylogenetic clustering of extinction [Fritz and Purvis' D]) in order to determine the degree to which they co-varied on taxonomic and cladistic trees. With respect to topology taxonomies are good approximations of the underlying evolutionary relationships as recorded in inferred cladograms. Detection of phylogenetic clustering of extinction could not be properly assessed. For all other evolutionary analyses, results from taxonomy-based phylogenies (TBPs) co-varied with those from cladogram-based phylogenies (CBPs), but individual comparisons could be misleading. The relative length of terminal branches (influenced by stratigraphy and sampling rate) is a key control on the shared information between, and therefore the relative performance of, TBP and CBP. Collectively these results suggest that under particular circumstances and after careful consideration some taxonomies, or composite trees that incorporate taxonomic information, could be used in place of a formal analytical solution, but workers must be cautious. This opens certain parts of a previously inaccessible section of the fossil record to interrogation within an explicit comparative framework, which will help to test many classical macroevolutionary hypotheses formulated for groups that currently lack formal phylogenetic estimates.

Usage notes