Skip to main content

Data from: Variation in opsin genes correlates with signaling ecology in North American fireflies


Sander, Sarah E.; Hall, David W. (2015), Data from: Variation in opsin genes correlates with signaling ecology in North American fireflies, Dryad, Dataset,


Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize the detection of conspecific signal colours emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here, we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal colour and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on long wavelength opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors and signalling environments.

Usage notes


North America