Skip to main content
Dryad logo

Data from: Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance

Citation

Biederman, Amanda M.; Kuhn, Donald E.; O'Brien, Kristin M.; Crockett, Elizabeth L (2019), Data from: Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance, Dryad, Dataset, https://doi.org/10.5061/dryad.qm0b25h

Abstract

Disruption of neuronal function is likely to influence limits to thermal tolerance. We hypothesized that with acute warming the structure and function of neuronal membranes in the Antarctic notothenioid fish Chaenocephalus aceratus are more vulnerable to perturbation than membranes in the more thermotolerant notothenioid Notothenia coriiceps. Fluidity was quantified in synaptic membranes, mitochondrial membranes, and myelin from brains of both species of Antarctic fishes. Polar lipid compositions and cholesterol contents were analyzed in myelin; cholesterol was measured in synaptic membranes. Thermal profiles were determined for activities of two membrane-associated proteins, acetylcholinesterase (AChE) and Na+/K+-ATPase (NKA), from brains of animals maintained at ambient temperature or exposed to their critical thermal maxima (CTMAX). Synaptic membranes of C. aceratus were consistently more fluid than those of N. coriiceps (P < 0.0001). Although the fluidities of both myelin and mitochondrial membranes were similar among species, sensitivity of myelin fluidity to in vitro warming was greater in N. coriiceps than in C. aceratus (P < 0.001), which can be explained by lower cholesterol contents in myelin of N. coriiceps (P < 0.05). Activities of both enzymes, AChE and NKA, declined upon CTMAX exposure in C. aceratus, but not in N. coriiceps. We suggest that hyper-fluidization of synaptic membranes with warming in C. aceratus may explain the greater stenothermy in this species, and that thermal limits in notothenioids are more likely to be influenced by perturbations in synaptic membranes than in other membranes of the nervous system.

Usage Notes

Funding

National Science Foundation, Award: PLR 1341602

Location

Western Antarctic Peninsula