Skip to main content
Dryad logo

Bark content variations and the production of Populus deltoides as a source of bioenergy under temperate climate conditions

Citation

Eslamdoust, Jamshid (2022), Bark content variations and the production of Populus deltoides as a source of bioenergy under temperate climate conditions, Dryad, Dataset, https://doi.org/10.5061/dryad.qv9s4mwg7

Abstract

Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).

Methods

Plot design and harvesting


Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees.

Measurements of bark percentages

The stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments.