Data from: Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet
Data files
Feb 06, 2023 version files 5.76 KB
-
README.md
2.79 KB
-
RootAdapt_Field_Data_2018.csv
1.40 KB
-
RootAdapt_Field_Data_2020.csv
1.57 KB
Abstract
Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat- and drought-tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modelling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including GWAS and QTL approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.
Methods
Field experiments were performed at the CNRA station (Centre National de Recherche Agronomique) of the Institut Sénégalais des Recherches Agricoles (ISRA) in Bambey, Senegal (14.42°N, 16.28°W), during the dry season of 2018 and 2020 to fully control irrigation. Fields are composed of deep sandy soil with low levels of clay and silt (12%) and organic matter (0.4%). Clay and silt content increase with soil depth from 10.2% in the 0 to 0.2 m layer to 13.3% in the 0.8 to 1.2 m layer. Experiments were set up using a complete randomized block design with 4 plots per variety, each composed of 6 rows 6.3 m-long with 0.9 m between plants and 0.9 m between rows (42 plants/plot). Irrigation was provided after sowing (30 mm of water) to allow seeds to germinate and was followed by a period of 42 days of water withholding to impose seedling drought stress. Thinning was performed 15 days after sowing to conserve a single plant per planting hole. Fertilization (NPK) following standard recommendation of 150 kg ha-1 NPK (15-15-15) was applied to the entire trial after sowing and before irrigation. Fields were maintained free of weeds. Plant height was measured at 42 days after sowing. Stay-green trait expressed as the percentage of green leaves compared to the total number of leaves was estimated on 3 plants per plot at 42 days after sowing. Survival rate was measured as the percentage of surviving plants at 42 days after sowing in each plot compared to the initial number of plants that had emerged. Photosynthesis parameters (FvFm: maximum quantum efficiency of photosystem II and PI: performance index of photosynthesis) were measured on three plants per plot at 32 days after sowing in both 2018 and 2020 using a Handy Pea chlorophyll fluorometer (Hansatech Instruments Ltd.).
Plants were phenotyped for primary root length with a paper-based hydroponic system as previously described (Passot et al., 2016). Seeds were surface-sterilized and pre-germinated in Petri dishes, transferred into pouches 24 hours after germination at a density of 3 seeds per paper and then maintained in a growth room with a 14-hour photoperiod (28°C during day and 24°C during night). Pictures of the root systems were taken 6 days after germination with a D5100 DSLR camera (Nikon) at a resolution of 16 M pixels. The camera was fixed on a holder to maintain the same distance between the lens and each root system. Primary root lengths were measured using RootNav (Pound et al., 2013).
Statistical analyses were performed using R version 4.0.2 5 (R core team, 2018.). Principal component analyses were performed using the prcomp() function. Pearson’s correlation analyses were performed using the corr() function within the ggcorrplot package. The variance of each variable was partitioned into components attributable to the genotypic (line) and year in interaction with block as additional factor using an analysis of variance (aov() function in the agricolae package). Adjusted means of the variables for the different lines across the two experiments were further calculated using the least-squares means lsmeans() function (lsmeans package).
Usage notes
Any software able to open a tab file (Microsoft Excel, Numbers).