Skip to main content
Dryad

Data from: The effects of temporal and spatial predictions on stretch reflexes of ankle flexor and extensor muscles while standing

Abstract

The purpose of the present study was to investigate how stretch reflex (SR) responses in the ankle extensor (soleus: SOL) and flexor (tibialis anterior: TA) muscles would be modulated with temporal and/or spatial predictions of external perturbations and whether their effects are specific to the standing posture. SR responses in the SOL/TA were elicited by imposing quick ankle toes-up/toes-down rotations while standing upright and in the supine position. We designed four experimental conditions based on pre-information about perturbations: no information (No Cue), the timing of the perturbation onset (TIM), the direction of the perturbation (DIR), and both the timing and direction of the perturbation (TIM/DIR). Each condition was separated and its order was counterbalanced. In the SR of TA evoked by toes-down rotation, integrated electromyography activities of the late component were significantly reduced in the TIM and TIM/DIR conditions as compared with those in the No Cue and DIR conditions. The occurrence rate of late SR components that reflects how often the reflex response was observed was also lower in the TIM and TIM/DIR conditions as compared with that in the No Cue and DIR conditions. On the other hand, no significant changes were seen among the four conditions in the early SR component in the TA and both SR components in the SOL. The same results in the occurrence rate were found in the supine position. The present results suggest (1) only temporal predictions have a remarkable effect on the SR excitability of the TA, and (2) this effect is independent of posture.