Skip to main content
Dryad

Data from: Local origin of global contact numbers in frictional ellipsoid packings

Data files

Apr 21, 2015 version files 21.27 MB

Click names to download individual files

Abstract

In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α, prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α. We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z(ϕg,α,X)=∫Zl(ϕl,α,X)P(ϕl|ϕg)dϕl. The local contact number function Zl(ϕl,α,X) describes the relevant physics in term of locally defined variables only, including possible higher order terms X. The conditional probability P(ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X. Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible.