Skip to main content
Dryad

Flow cytometry YFP and CFP data and deep sequencing data of populations evolving in galactose

Abstract

Copy-number and point mutations form the basis for most evolutionary novelty through the process of gene duplication and divergence. While a plethora of genomic sequence data reveals the long-term fate of diverging coding sequences and their cis-regulatory elements, little is known about the early dynamics around the duplication event itself. In microorganisms, selection for increased gene expression often drives the expansion of gene copy-number mutations, which serves as a crude adaptation, prior to divergence through refining point mutations. Using a simple synthetic genetic system that allows us to distinguish copy-number and point mutations, we study their early and transient adaptive dynamics in real-time in Escherichia coli. We find two qualitatively different routes of adaptation depending on the level of functional improvement selected for: In conditions of high gene expression demand, the two types of mutations occur as a combination. Under low gene expression demand, negative epistasis between the two types of mutations renders them mutually exclusive. Thus, owing to their higher frequency, adaptation is dominated by copy-number mutations. Ultimately, due to high rates of reversal and pleiotropic cost, copy-number mutations may not only serve as a crude and transient adaptation but also constrain sequence divergence over evolutionary time scales.