Skip to main content
Dryad

A novel SNP assay reveals increased genetic variability and abundance following translocations to a remnant Allegheny woodrat population

Data files

Oct 12, 2022 version files 2.44 GB

Abstract

Background: Allegheny woodrats (Neotoma magister) are found in metapopulations distributed throughout the Interior Highlands and Appalachia. Historically these metapopulations persisted as relatively fluid networks, enabling gene flow between subpopulations and recolonization of formerly extirpated regions. However, over the past 45 years, Allegheny woodrat populations have experienced population declines throughout their range due to a combination of habitat destruction, declining hard mast availability, and roundworm parasitism. In an effort to initiate genetic rescue of a small, genetically depauperate subpopulation in New Jersey, woodrats were translocated from a genetically robust population in Pennsylvania (PA) in 2015, 2016, and 2017. Herein, we assess the efficacy of these translocations to restore genetic diversity within the recipient population. 

Results: We designed a novel 134 single nucleotide polymorphism panel, which was used to genotype the six woodrats translocated from PA and 82 individuals from the NJ population captured before and after the translocation events. These data indicated that a minimum of two translocated individuals successfully produced at least 16 offspring, who reproduced as well. Further, population-wide observed heterozygosity rose substantially following the first set of translocations, reached levels comparable to that of populations in Indiana and Ohio, and remained elevated throughout the following years. Abundance also increased during the monitoring period, suggesting Pennsylvania translocations initiated the genetic rescue of the New Jersey population.

Conclusions: Our results indicate, encouragingly, that very small numbers of translocated individuals can successfully restore the genetic diversity of a threatened population. Our work also highlights the risks of managing very small populations, such as when translocated individuals have greater reproductive success relative to residents. Finally, we note that ongoing work with Allegheny woodrats may broadly shape our understanding of genetic rescue within metapopulations and across heterogeneous landscapes.