Skip to main content

Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots

Cite this dataset

Sholihah, Arni et al. (2021). Impact of Pleistocene eustatic fluctuations on evolutionary dynamics in Southeast Asian biodiversity hotspots [Dataset]. Dryad.


Pleistocene Climatic Fluctuations (PCF) are frequently highlighted as important evolutionary engines that triggered cycles of biome expansion and contraction. While there is ample evidence of the impact of PCF on biodiversity for continental biomes, the consequences in insular systems depend on the geology of the islands and the ecology of the taxa inhabiting them. The idiosyncratic aspects of insular systems are exemplified by the islands of the Sunda Shelf in Southeast Asia (Sundaland), where PCF-induced eustatic fluctuations had complex interactions with the geology of the region, resulting in high species diversity and endemism. Emergent land in Southeast Asia varied drastically with sea level fluctuations during the Pleistocene. Climate-induced fluctuations in sea level caused temporary connections between insular and continental biodiversity hotspots in Southeast Asia. These exposed lands likely had freshwater drainage systems that extended between modern islands: the Paleoriver Hypothesis. Built upon the assumption that aquatic organisms are among the most suitable models to trace ancient river boundaries and fluctuations of landmass coverage, the present study aims to examine the evolutionary consequences of PCF on the dispersal of freshwater biodiversity in Southeast Asia. Time-calibrated phylogenies of DNA-delimited species were inferred for six species-rich freshwater fish genera in Southeast Asia (Clarias, Channa, Glyptothorax, Hemirhamphodon, Dermogenys, Nomorhamphus). The results highlight rampant cryptic diversity and the temporal localization of most speciation events during the Pleistocene, with 88% of speciation events occurring during this period. Diversification analyses indicate that sea level-dependent diversification models poorly account for species proliferation patterns for all clades excepting Channa. Ancestral area estimations point to Borneo as the most likely origin for most lineages, with two waves of dispersal to Sumatra and Java during the last 5 Myrs. Speciation events are more frequently associated with boundaries of the paleoriver watersheds, with 60%, than islands boundaries, with 40%. In total, one-third of speciation events are inferred to have occured within paleorivers on a single island, suggesting that habitat heterogeneity and factors other than allopatry between islands substantially affected diversification of Sundaland fishes. Our results suggest that species proliferation in Sundaland is not wholly reliant on Pleistocene sea-level fluctuations isolating populations on different islands.


Dataset used in this research has been collected from international repositories as well as has been treated and analysed within the framework of metadata analysis.