Skip to main content
Dryad

Raw data accompanying: Ground reaction forces in monitor lizards (Varanidae) and the scaling of locomotion in sprawling tetrapods

Data files

Oct 26, 2020 version files 166.86 KB
Jan 19, 2021 version files 239.90 KB

Abstract

Geometric scaling predicts a major challenge for legged, terrestrial locomotion. Locomotor support requirements scale identically with body mass (α M1), while force generation capacity should scale α M2/3 as it depends on muscle cross-sectional area. Mammals compensate with more upright limb postures at larger sizes, but it remains unknown how sprawling tetrapods deal with this challenge. Varanid lizards are an ideal group to address this question because they cover an enormous body size range while maintaining a similar bent-limb posture and body proportions. This study reports the scaling of ground reaction forces and duty factor for varanid lizards ranging from 7 g 37 kg. Impulses (force x time) scaled roughly as predicted by the inverted pendulum model (α M0.99-1.34) while peak forces (α M0.73-1.00) scaled higher than expected. Duty factor scaled α M0.04 and was higher for the hindlimb than the forelimb. The proportion of vertical impulse to total impulse increased with body size, and impulses decreased while peak forces increased with speed. These results provide valuable data into how locomotor forces vary with body size and suggest how other, extinct, sprawling tetrapods may have dealt with the biomechanical challenges associated with generating sufficient locomotor forces at larger body sizes.