Skip to main content
Dryad

Data for: Size spectrum model reveals importance of considering species interactions in a freshwater fisheries management context

Data files

Apr 13, 2022 version files 5.84 KB

Abstract

Inland fisheries have significant cultural and economic value around the globe, providing dietary protein, income, and recreation. Consequently, methods for monitoring and managing these important fisheries are continually being refined. In marine systems, multi-species size spectrum models have been increasingly used to explore management scenarios of important fish stocks within an ecosystem-based fisheries management framework; however, these models have not been applied in freshwater systems. In this study, we developed a multi-species size spectrum model for the fish community of Lake Nipissing, a large, productive lake in Ontario, Canada. To the best of our knowledge, this is the first fully calibrated multi-species size spectrum model for an inland fishery. Using this model, we explored the impacts of different management scenarios on fish community dynamics while taking species interactions into account. Specifically, we examined how changes in fishing mortality affect: (1) species biomass; (2) community size structure; and (3) stock recovery times. We found that community dynamics following changes in fishing mortality were driven by complex interactions among species, including competition and predation. The greatest changes in biomass and community size structure were observed following changes in fishing mortality to top predators, with community size structure most strongly influenced by changes in mortality to the largest species in the community. Counter to predictions based on generation time, the smallest species in our model exhibited the longest time to recovery due to strong competition and predation. Our results demonstrate the importance of taking an ecosystem-based approach and considering species interactions in the management of inland fisheries and highlight the potential of size spectrum model use in freshwater systems.