Skip to main content
Dryad logo

Data from: An aposematic colour-polymorphic moth seen through the eyes of conspecifics and predators - sensitivity and colour discrimination in a tiger moth

Citation

Henze, Miriam J. et al. (2019), Data from: An aposematic colour-polymorphic moth seen through the eyes of conspecifics and predators - sensitivity and colour discrimination in a tiger moth, Dryad, Dataset, https://doi.org/10.5061/dryad.s46t627

Abstract

1. Although predation is commonly thought to exert the strongest selective pressure on colouration in aposematic species, sexual selection may also influence colouration. Specifically, polymorphism in aposematic species cannot be explained by natural selection alone. 2. Males of the aposematic wood tiger moth (Arctia plantaginis) are polymorphic for hindwing colouration throughout most of their range. In Scandinavia, they display either white or yellow hindwings. Female hindwing colouration varies continuously from bright orange to red. Redder females and yellow males suffer least from bird predation. 3. White males often have higher mating success than yellow males. Therefore, we ask whether females can discriminate the two male morphs by colour. Males approach females by following pheromone plumes from a distance, but search visually at short range. This raises the questions whether males discriminate female colouration and, in turn, whether female colouration is also sexually selected. 4. Using electroretinograms, we found significantly larger retinal responses in male than female A. plantaginis, but similar spectral sensitivities in both sexes, with peaks in the UV (349 nm), blue (457 nm), and green (521 nm) wavelength range. 5. According to colour vision models, conspecifics can discriminate white and yellow males as separate morphs, but not orange and red females. For moths and birds (Cyanistes caeruleus), white males are more conspicuous against green and brown backgrounds, mostly due to UV reflectivity, and red females are slightly more conspicuous than orange females. 6. The costly red colouration among females is likely selected by predator pressure, not by conspecifics, whereas male colour polymorphism is probably maintained, at least partly, by a the opposing forces of predation pressure favouring yellow males, and female preference for white males. Whether or not the preference for white males is based on visual cues requires further testing. 7. The evolution of polymorphic aposematic animals can be better understood when the visual system of the species and their predators is taken into consideration.

Usage Notes

Location

Northern Europe
Finland