Skip to main content
Dryad logo

Data from: Sperm metabolic rate predicts female mating frequency across Drosophila species

Citation

Turnell, Biz; Reinhardt, Klaus (2022), Data from: Sperm metabolic rate predicts female mating frequency across Drosophila species, Dryad, Dataset, https://doi.org/10.5061/dryad.sj3tx966c

Abstract

Female mating rates vary widely, even among closely related species, but the reasons for this variation are not fully understood. Across Drosophila species, female mating frequencies are positively associated with sperm length. This association may be due in part to sperm limitation, with longer-spermed species transferring fewer sperm, or to cryptic female choice. However, a previously overlooked factor is sperm metabolic rate, which may correlate with sperm length. If faster-metabolizing sperm accumulate age-related cellular damage more quickly, then females should remate sooner to obtain fresh sperm. Alternatively, frequent female mating may select for increased sperm competitiveness via increased metabolism. Here, we measure sperm metabolism across 13 Drosophila species and compare these measures to published data on female mating rate and on sperm length. Using fluorescent lifetime imaging microscopy, we quantify NAD(P)H metabolism ex vivo, in intact organs. Phylogenetically controlled regression reveals that sperm metabolic rate is positively associated with sperm length and with female mating frequency. Path analysis shows sperm length driving sperm metabolism and sperm metabolism either driving or being driven by female mating rate. While the causal directionality of these relationships remains to be fully resolved, and the effect of sperm metabolism on sperm aging and/or sperm competitiveness remains to be established, our results demonstrate the importance of sperm metabolism in sexual selection.

Funding

National Science Foundation, Award: 1612234