Skip to main content
Dryad

Data from: Functional diversity of phyllostomid bats in an urban-rural landscape: a scale-dependent analysis

Data files

Dec 26, 2020 version files 542.44 MB

Abstract

Urbanization is one of the most pervasive landscape transformational processes responsible for novel selection agents promoting functional community homogenization. Bats may persist in those human environments, but the mechanisms responsible for their adaptability and the spatial scales in which landscape imposes environmental filtering remain poorly studied in the Neotropics. We tested the hypothesis that landscape composition interacts with the spatial scale to affect the functional diversity of phyllostomids in an urban-rural gradient. Based on functional traits, we calculated indices of functional richness, divergence, evenness, community-weighted means of morphological traits, and classified species into functional groups. We evaluated the changes of those variables in response to forest, grassland, and urbanized areas at 0.5, 1.25 and, 2 km scales. The number of functional groups, functional richness, and functional evenness tended to be higher in areas far from cities and with higher forest cover, whereas functional divergence increased in more urbanized areas. Our results show that the mean value of wing loading in the assemblage was negatively associated to landscape transformation at several spatial scales. However, environmental filtering driven by grass cover was particularly robust at the 500 m scale, affecting big-sized species with long pointed wings. Retaining natural forest in cattle ranging systems at ~12 km2 appears to favor bat abundance evenness among functional types in the urban-rural landscape. Recognizing the scale of the effect on phyllostomid functional responses appears to be a fundamental issue for elucidating the spatial extent to which phyllostomid conservation planning in urban-rural landscapes should be addressed.