Skip to main content
Dryad

Using global remote camera data of a “solitary” species complex to evaluate the drivers of group formation

Data files

Feb 16, 2024 version files 7.24 MB

Abstract

The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of “social” and “solitary” inhibit our capacity to understand species, and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the “solitary” model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species’ proclivity towards aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). Combined these factors explain observed variance in context-dependent tendencies towards grouping. The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognise complexities in the social behaviours of apparently “solitary” species limits our understanding not only of the individual species, but also the causes and consequences of group formation.