Skip to main content
Dryad logo

Data from: Minimal variation in eutherian brain growth rates during fetal neurogenesis

Citation

Halley, Andrew C. (2017), Data from: Minimal variation in eutherian brain growth rates during fetal neurogenesis, Dryad, Dataset, https://doi.org/10.5061/dryad.t3n50

Abstract

A central question in the evolution of brain development is whether species differ in rates of brain growth during fetal neurogenesis. Studies of neonatal data have found allometric evidence for brain growth rate differences according to physiological variables such as relative metabolism and placental invasiveness, but these findings have not been tested against fetal data directly. Here, we measure rates of exponential brain growth acceleration in 10 eutherian mammals, two marsupials, and two birds. Eutherian brain acceleration exhibits minimal variation relative to body and visceral organ growth, varies independently of correlated growth patterns in other organs, and is unrelated to proposed physiological constraints such as metabolic rate or placental invasiveness. Brain growth rates in two birds overlap with eutherian variation, while marsupial brain growth is exceptionally slow. Peak brain growth velocity is linked in time with forebrain myelination and eye opening, reliably separates altricial species born before it from precocial species born afterwards, and is an excellent predictor of adult brain size (r2 = 0.98). Species with faster body growth exhibit larger relative brain size in early ontogeny, while brain growth is unrelated to allometric measures. These findings indicate a surprising conservation of brain growth rates during fetal neurogenesis in eutherian mammals, clarify sources of variation in neonatal brain size, and suggest that slow body growth rates cause species to be more encephalized at birth.

Usage Notes