Skip to main content
Dryad

Data from: Evaluation and mechanism of ammonia nitrogen removal using sediments from a malodorous river

Data files

Feb 21, 2018 version files 12.31 MB

Abstract

Malodorous rivers are among the major environmental problem of cities in developing countries. In addition to the unpleasant smell, the sediments of such rivers can act as a sink for pollutants. The excessive amount of ammonia nitrogen (NH3−N) in rivers is the main factor that causes the malodor. Therefore, a suitable method is necessary for sediment disposition and NH3−N removal in malodorous rivers. The sediment in a malodorous river (PS) in Beijing, China was selected and modified via calcination (PS-D), Na+ doping (PS-Na), and calcination−Na+ doping (PS-DNa). The NH3−N removal efficiency using the four sediment materials was evaluated, and results indicated that the NH3−N removal efficiency using the modified sediment materials could reach over 60%. PS-DNa achieved the highest NH3−N removal efficiency (90.04%). The kinetics study showed that the pseudo-second-order model could effectively describe the sorption kinetics and that the exterior activated site had the main function of P sorption. The results of the sorption isotherms indicated that the maximum sorption capacities of PS-Na, PS-D, and PS-DNa were 0.343, 0.831, and 1.113 mg g−1, respectively, and a high temperature was favorable to sorption. The calculated thermodynamic parameters suggested that sorption was a feasible or spontaneous (ΔG < 0), entropy-driven (ΔS > 0), and endothermic (ΔH > 0) reaction.