Skip to main content
Dryad logo

Data from: Determination of the genetic architecture underlying short wavelength sensitivity in Lake Malawi cichlids

Citation

Nandamuri, Sri Pratima; Dalton, Brian E.; Carleton, Karen L. (2017), Data from: Determination of the genetic architecture underlying short wavelength sensitivity in Lake Malawi cichlids, Dryad, Dataset, https://doi.org/10.5061/dryad.t960f

Abstract

African cichlids are an exemplary system to study organismal diversity and rapid speciation. Species differ in external morphology including jaw shape and body coloration, but also differ in sensory systems including vision. All cichlids have 7 cone opsin genes with species differing broadly in which opsins are expressed. The differential opsin expression results in closely related species with substantial differences in spectral sensitivity of their photoreceptors. In this work, we take a first step in determining the genetic basis of opsin expression in cichlids. Using a second generation cross between 2 species with different opsin expression patterns, we make a conservative estimate that short wavelength opsin expression is regulated by a few loci. Genetic mapping in 96 F2 hybrids provides clear evidence of a cis-regulatory region for SWS1 opsin that explains 34% of the variation in expression between the 2 species. Additionally, in situ hybridization has shown that SWS1 and SWS2B opsins are coexpressed in individual single cones in the retinas of F2 progeny. Results from this work will contribute to a better understanding of the genetic architecture underlying opsin expression. This knowledge will help answer long-standing questions about the evolutionary processes fundamental to opsin expression variation and how this contributes to adaptive cichlid divergence.

Usage Notes