Skip to main content
Dryad

Real-world human-robot interaction data with robotic pets in user homes in the United States and South Korea

Data files

Oct 17, 2023 version files 89.67 MB
Jan 02, 2024 version files 89.67 MB

Abstract

Socially-assistive robots (SARs) hold significant potential to transform the management of chronic healthcare conditions (e.g. diabetes, Alzheimer’s, dementia) outside the clinic walls. However doing so entails embedding such autonomous robots into people’s daily lives and home living environments, which are deeply shaped by the cultural and geographic locations within which they are situated. That begs the question of whether we can design autonomous interactive behaviors between SARs and humans based on universal machine learning (ML) and deep learning (DL) models of robotic sensor data that would work across such diverse environments. To investigate this, we conducted a long-term user study with 26 participants across two diverse locations (the United States and South Korea) with SARs deployed in each user’s home for several weeks. We collected robotic sensor data every second of every day, combined with sophisticated ecological momentary assessment (EMA) sampling techniques, to generate a large-scale dataset of over 270 million data points representing 173 hours of randomly-sampled naturalistic interaction data between the human and robot pet. Interaction behaviors included activities like playing, petting, talking, cooking, etc.