Skip to main content
Dryad

Data from: Heatwaves exacerbate pollen limitation through reductions in pollen production and pollen vigour

Data files

Sep 13, 2024 version files 21.73 KB

Abstract

Background and aims

Increasingly frequent heat waves threaten the reproduction of flowering plants; compromising the future persistence, adaptive capacity, and dispersal of wild plant populations, and also the yield of fruit-bearing crop plants. Heat damages development of sensitive floral organs and gametes, which inhibits pollen germination, pollen tube growth, and fertilization. However, the role of heat has not been integrated into the framework of pollen quantity and quality limitation and how heat influences the success of cross and self-pollination.

Methods

We exposed developing flowers to either control temperature (25C:20C) or extreme heat (35C:20C) over 72 hours. We then hand pollinated them with either crossed or self-derived pollen from the same temperature treatment to determine direct and interactive effects of simulated heatwaves on pollen tube growth and resulting seed set. We also collected anthers from virgin flowers to measure heat impacts pollen production. 

Key results

Under cooler control temperatures pollen tube survival of self-derived pollen was approximately 27% lower than that of crossed pollen. Pollen tube survival in heat treated cross-pollinated and heat treated self-pollinated flowers were 71% and 77% lower than cross pollen used control temperatures. These differences in pollen tube survival rate between heat treated cross-pollinated and heat-treated self-pollinated flowers were insignificant. Furthermore, extreme heat reduced seed set by 87%, regardless of pollen origin and also reduced pollen production during flower development by approximately 20%. 

Conclusions

Our results suggest flowers that develop during heatwaves are likely to experience exacerbated pollen quantity and quality limitation driven by changes in pollen production and pollen vigour. Heatwave induced pollen limitation will likely reduce crop yields in agricultural systems, and depress mating and reproduction in wild plant species, the latter of which may hinder the adaptive capacity of plants to a rapidly changing world.