Skip to main content
Dryad

Occurrences and R code for: Dynamic distribution modeling of the Swamp Tigertail dragonfly Synthemis eustalacta (Odonata: Anisoptera: Synthemistidae) over a 20-year bushfire regime

Data files

Oct 24, 2022 version files 1.55 GB

Abstract

Intensity and severity of bushfires in Australia have increased over the past few decades due to climate change, threatening habitat loss for numerous species. Although the impact of bushfires on vertebrates is well-documented, the corresponding effects on insect taxa are rarely examined, although they are responsible for key ecosystem functions and services. Understanding the effects of bushfire seasons on insect distributions could elucidate long-term impacts and patterns of ecosystem recovery. Here, we investigated the effects of recent bushfires, land-cover change, and climatic variables on the distribution of a common and endemic dragonfly, the swamp tigertail (Synthemis eustalacta (Burmeister, 1839)), which inhabits forests that have recently undergone severe burning. We used a temporally dynamic species distribution modeling approach that incorporated 20 years of community-science data on dragonfly occurrence and predictors based on fire, land cover, and climate to make yearly predictions of suitability. We also compared this to an approach that combines multiple temporally static models that use annual data. We found that for both approaches, fire-specific variables had negligible importance for the models, while percent of tree and non-vegetative cover were the most important. We also found that the dynamic model outperformed the static ones when evaluated with cross-validation. Model predictions indicated temporal variation in area and spatial arrangement of suitable habitat but no patterns of habitat expansion, contraction, or shifting. These results highlight not only the efficacy of dynamic modeling to capture spatiotemporal variables, such as vegetation cover for an endemic insect species, but also provide a novel approach to mapping species distributions with sparse locality records.